A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
解题思路:
动态规划,每个dp[i][j]代表有几种到达他的路径。注意一下二维vector的初始赋值。
- class Solution {
- public:
- int uniquePaths(int m, int n) {
- if(m==0&&n==0) return 0;
- vector<vector<int>> dp(m+1, vector<int> (n+1, 1));
- dp[1][1]=1;
- for(int i=1;i<=m;i++)
- for(int j=1;j<=n;j++){
- if(i-1>0&&j-1>0) dp[i][j] = dp[i-1][j]+dp[i][j-1];
- else if(i-1>0&&j-1==0) dp[i][j] = dp[i-1][j];
- else if(i-1==0&&j-1>0) dp[i][j] = dp[i][j-1];
- }
- return dp[m][n];
- }
- };