二者基本相似,在进行图像匹配是一个非常重要的方法。
相关是滤波器模板移过图像并计算计算每个位置乘积之和的处理
卷积的机理相似,但滤波器首先要旋转180度
相关的计算步骤:
(1)移动相关核的中心元素,使它位于输入图像待处理像素的正上方
(2)将输入图像的像素值作为权重,乘以相关核
(3)将上面各步得到的结果相加做为输出
卷积的计算步骤:
(1)卷积核绕自己的核心元素顺时针旋转180度
(2)移动卷积核的中心元素,使它位于输入图像待处理像素的正上方
(3)在旋转后的卷积核中,将输入图像的像素值作为权重相乘
(4)第三步各结果的和做为该输入像素对应的输出像素
超出边界时要补充像素,一般是添加0或者添加原始边界像素的值
可以看出他们的主要区别在于计算卷积的时候,卷积核要先做旋转。
而计算相关过程中不需要旋转相关核。
离散单位冲击:我们将包含单个1而其余全是0的函数成为离散单位冲击。重要性质:一个函数与离散单位冲击相关,在冲击位置产生这个函数的一
个翻转版本。
f 函数
w 滤波器模板
eg:
f(x,y)
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
w(x,y)
1 2 3
4 5 6
7 8 9
相关 f*w =
0 0 0 0 0
0 9 8 7 0
0 6 5 4 0
0 3 2 1 0
0 0 0 0 0
卷积f*w=
0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0
相关的用途:图象的匹配
假如函数f中存在w的一个复制版本,即f:
0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0
f*w是多少呢?读者也自己算吧。
9 26 50 38 21
42 94 154 106 54
90 186 285 186 90
54 106 154 94 42
21 38 50 26 9
是不是会发现w与f中w的复制版本重合时,该点的值最大。最大值为
1^2+2^2+……+9^2 = 285
这就是用相关进行图像匹配的基本原理。当然了,在图像匹配时还要进行
相关函数的归一化等操作。
matlab源代码:
%函数f f = [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]; %滤波器模板 w = [1 2 3 4 5 6 7 8 9]; %卷积 ff = conv2(f,w,'same') %相关 ff2 = imfilter(f,w) %图像匹配的基本原理 f2 = [ 0 0 0 0 0 0 1 2 3 0 0 4 5 6 0 0 7 8 9 0 0 0 0 0 0]; ff3 = imfilter(f2,w)