题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1。
设f(d) = GCD(a,b,c) = d的种类数 ;
F(n) 为GCD(a,b,c) = d 的倍数的种类数, n%a == 0 n%b==0 n%c==0。
即 :F(d) = (N/d)*(N/d)*(N/d);
则f(d) = sigma( mu[n/d]*F(n), d|n )
由于d = 1 所以f(1) = sigma( mu[n]*F(n) ) = sigma( mu[n]*(N/n)*(N/n)*(N/n) );
由于0能够取到,所以对于a,b,c 要讨论一个为0 ,两个为0的情况 (3种).
#pragma comment(linker,"/STACK:1024000000,1024000000") #include <cstdio> #include <cstring> #include <string> #include <cmath> #include <limits.h> #include <iostream> #include <algorithm> #include <queue> #include <cstdlib> #include <stack> #include <vector> #include <set> #include <map> #define LL long long #define mod 100000000 #define inf 0x3f3f3f3f #define eps 1e-6 #define N 1000000 #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define PII pair<int,int> using namespace std; inline int read() { char ch=getchar();int x=0,f=1; while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();} while(ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();} return x*f; } bool vis[N+5]; int mu[N+5],prime[N+5],sum[N+5],num[N+5]; void Mobius() { memset(vis,false,sizeof(vis)); mu[1]=1; int tot=0; for(int i=2;i<=N;i++) { if(!vis[i]) { prime[tot++]=i; mu[i]=-1; } for(int j=0;j<tot;j++) { if(i*prime[j]>N)break; vis[i*prime[j]]=true; if(i%prime[j]==0) { mu[i*prime[j]]=0; break; } else { mu[i*prime[j]]=-mu[i]; } } } for(int i=1;i<=N;i++)sum[i]=sum[i-1]+mu[i]; } LL solve(int n) { LL res=3; for(int i=1,last=0;i<=n;i=last+1) { last=n/(n/i); res+=(LL)(sum[last]-sum[i-1])*(n/i)*(n/i)*(n/i+3); } return res; } int main() { int T,n; Mobius(); T=read(); while(T--) { n=read(); LL ans=solve(n); printf("%lld ",ans); } }