zoukankan      html  css  js  c++  java
  • A1030. Travel Plan (30)

    A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (<=500) is the number of cities (and hence the cities are numbered from 0 to N-1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

    City1 City2 Distance Cost

    where the numbers are all integers no more than 500, and are separated by a space.

    Output Specification:

    For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

    Sample Input

    4 5 0 3
    0 1 1 20
    1 3 2 30
    0 3 4 10
    0 2 2 20
    2 3 1 20
    

    Sample Output

    0 2 3 3 40
    #include <stdio.h>
    #include <stdlib.h>
    #include <iostream>
    #include <string.h>
    #include <math.h>
    #include <algorithm>
    #include <string>
    #include <stack> 
    #include <queue>
    #include <vector>
    using namespace std;
    const int maxn=510;
    const int  INF=1000000000;
    int G[maxn][maxn];
    int d[maxn],c[maxn],pre[maxn],cost[maxn][maxn];
    bool vis[maxn]={false};
    int n,m,s,de;
    //c[]获得暂时最小代价 
    void djs(int s)
    {
        fill(c,c+maxn,INF);
        fill(d,d+maxn,INF);
        c[s]=0;
        d[s]=0;//自己第一个被vis 
        for(int i=0;i<n;i++)pre[i]=i;
        for(int i=0;i<n;i++)
        {
            int u=-1,min=INF;
            for(int j=0;j<n;j++)
            {
                if(vis[j]==false&&d[j]<min)
                {
                    u=j;
                    min=d[j];
                }
            }
            if(u==-1)return;
            vis[u]=true;
            for(int v=0;v<n;v++)
            {
                if(vis[v]==false&&G[u][v]!=INF)
                {
                    if(d[u]+G[u][v]<d[v])
                    {
                        d[v]=d[u]+G[u][v];
                        c[v]=c[u]+cost[u][v];
                        pre[v]=u;
                    }else if (d[u]+G[u][v]==d[v])
                    {
                        if(c[v]>c[u]+cost[u][v])
                        {
                            c[v]=c[u]+cost[u][v];
                            pre[v]=u;
                        }
                    }
                }
            }
            
        }
        
    }
    
    void print(int v)
    {
        if(v==s)
        {
            printf("%d ",v);
            return;
        }
        print(pre[v]);
        printf("%d ",v);
    }
    
    int main(){
      scanf("%d %d %d %d",&n,&m,&s,&de);
      fill(G[0],G[0]+maxn*maxn,INF);
      for(int i=0;i<m;i++)
      {
          int c1,c2,dis,cost1;
          scanf("%d%d%d%d",&c1,&c2,&dis,&cost1);
         G[c1][c2]=dis;
         G[c2][c1]=dis;
         cost[c1][c2]=cost1;
         cost[c2][c1]=cost1;    
      }
      djs(s);
      print(de);
      printf("%d %d
    ",d[de],c[de]);
      return 0;
    }
  • 相关阅读:
    接口隔离原则(Interface Segregation Principle)ISP
    依赖倒置(Dependence Inversion Principle)DIP
    里氏替换原则(Liskov Substitution Principle) LSP
    单一指责原则(Single Responsibility Principle) SRP
    《面向对象葵花宝典》阅读笔记
    智能手表ticwatch穿戴体验
    我所理解的软件工程
    RBAC基于角色的权限访问控制
    程序员健康指南阅读笔记
    我晕倒在厕所了
  • 原文地址:https://www.cnblogs.com/ligen/p/4328825.html
Copyright © 2011-2022 走看看