zoukankan      html  css  js  c++  java
  • python parallism

    目的

    总结python并行方法。

    类别:

    多线程

    线程池

    多进程

    进程池

    协程

    threading

    https://docs.python.org/3/library/threading.html#module-threading

    https://github.com/jackfrued/Python-100-Days/blob/master/Day01-15/13.%E8%BF%9B%E7%A8%8B%E5%92%8C%E7%BA%BF%E7%A8%8B.md

    from random import randint
    from threading import Thread
    from time import time, sleep
    
    
    def download(filename):
        print('开始下载%s...' % filename)
        time_to_download = randint(5, 10)
        sleep(time_to_download)
        print('%s下载完成! 耗费了%d秒' % (filename, time_to_download))
    
    
    def main():
        start = time()
        t1 = Thread(target=download, args=('Python从入门到住院.pdf',))
        t1.start()
        t2 = Thread(target=download, args=('Peking Hot.avi',))
        t2.start()
        t1.join()
        t2.join()
        end = time()
        print('总共耗费了%.3f秒' % (end - start))
    
    
    if __name__ == '__main__':
        main()

    multiprocessing

    https://docs.python.org/3/library/multiprocessing.html

    https://github.com/jackfrued/Python-100-Days/blob/master/Day01-15/13.%E8%BF%9B%E7%A8%8B%E5%92%8C%E7%BA%BF%E7%A8%8B.md

    from multiprocessing import Process
    from os import getpid
    from random import randint
    from time import time, sleep
    
    
    def download_task(filename):
        print('启动下载进程,进程号[%d].' % getpid())
        print('开始下载%s...' % filename)
        time_to_download = randint(5, 10)
        sleep(time_to_download)
        print('%s下载完成! 耗费了%d秒' % (filename, time_to_download))
    
    
    def main():
        start = time()
        p1 = Process(target=download_task, args=('Python从入门到住院.pdf', ))
        p1.start()
        p2 = Process(target=download_task, args=('Peking Hot.avi', ))
        p2.start()
        p1.join()
        p2.join()
        end = time()
        print('总共耗费了%.2f秒.' % (end - start))
    
    
    if __name__ == '__main__':
        main()

    线程池

    https://docs.python.org/3.4/library/concurrent.futures.html#concurrent.futures.Executor

    import concurrent.futures
    import urllib.request
    
    URLS = ['http://www.foxnews.com/',
            'http://www.cnn.com/',
            'http://europe.wsj.com/',
            'http://www.bbc.co.uk/',
            'http://some-made-up-domain.com/']
    
    # Retrieve a single page and report the url and contents
    def load_url(url, timeout):
        with urllib.request.urlopen(url, timeout=timeout) as conn:
            return conn.read()
    
    # We can use a with statement to ensure threads are cleaned up promptly
    with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
        # Start the load operations and mark each future with its URL
        future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
        for future in concurrent.futures.as_completed(future_to_url):
            url = future_to_url[future]
            try:
                data = future.result()
            except Exception as exc:
                print('%r generated an exception: %s' % (url, exc))
            else:
                print('%r page is %d bytes' % (url, len(data)))

    进程池

    import concurrent.futures
    import math
    
    PRIMES = [
        112272535095293,
        112582705942171,
        112272535095293,
        115280095190773,
        115797848077099,
        1099726899285419]
    
    def is_prime(n):
        if n % 2 == 0:
            return False
    
        sqrt_n = int(math.floor(math.sqrt(n)))
        for i in range(3, sqrt_n + 1, 2):
            if n % i == 0:
                return False
        return True
    
    def main():
        with concurrent.futures.ProcessPoolExecutor() as executor:
            for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
                print('%d is prime: %s' % (number, prime))
    
    if __name__ == '__main__':
        main()

    https://github.com/jackfrued/Python-100-Days/blob/master/Day01-15/13.%E8%BF%9B%E7%A8%8B%E5%92%8C%E7%BA%BF%E7%A8%8B.mdhttps://github.com/jackfrued/Python-100-Days/blob/master/Day01-15/13.%E8%BF%9B%E7%A8%8B%E5%92%8C%E7%BA%BF%E7%A8%8B.md

    from multiprocessing import Process, Queue
    from random import randint
    from time import time
    
    
    def task_handler(curr_list, result_queue):
        total = 0
        for number in curr_list:
            total += number
        result_queue.put(total)
    
    
    def main():
        processes = []
        number_list = [x for x in range(1, 100000001)]
        result_queue = Queue()
        index = 0
        # 启动8个进程将数据切片后进行运算
        for _ in range(8):
            p = Process(target=task_handler,
                        args=(number_list[index:index + 12500000], result_queue))
            index += 12500000
            processes.append(p)
            p.start()
        # 开始记录所有进程执行完成花费的时间
        start = time()
        for p in processes:
            p.join()
        # 合并执行结果
        total = 0
        while not result_queue.empty():
            total += result_queue.get()
        print(total)
        end = time()
        print('Execution time: ', (end - start), 's', sep='')
    
    
    if __name__ == '__main__':
        main()

    asyncio

    https://docs.python.org/3/library/asyncio.html

    import asyncio
    
    async def main():
        print('Hello ...')
        await asyncio.sleep(1)
        print('... World!')
    
    # Python 3.7+
    asyncio.run(main())

    asyncio is a library to write concurrent code using the async/await syntax.

    asyncio is used as a foundation for multiple Python asynchronous frameworks that provide high-performance network and web-servers, database connection libraries, distributed task queues, etc.

    asyncio is often a perfect fit for IO-bound and high-level structured network code.

    asyncio provides a set of high-level APIs to:

    Additionally, there are low-level APIs for library and framework developers to:

    线程or进程模式

    https://docs.python.org/3/library/asyncio-eventloop.html

    import asyncio
    import concurrent.futures
    
    def blocking_io():
        # File operations (such as logging) can block the
        # event loop: run them in a thread pool.
        with open('/dev/urandom', 'rb') as f:
            return f.read(100)
    
    def cpu_bound():
        # CPU-bound operations will block the event loop:
        # in general it is preferable to run them in a
        # process pool.
        return sum(i * i for i in range(10 ** 7))
    
    async def main():
        loop = asyncio.get_running_loop()
    
        ## Options:
    
        # 1. Run in the default loop's executor:
        result = await loop.run_in_executor(
            None, blocking_io)
        print('default thread pool', result)
    
        # 2. Run in a custom thread pool:
        with concurrent.futures.ThreadPoolExecutor() as pool:
            result = await loop.run_in_executor(
                pool, blocking_io)
            print('custom thread pool', result)
    
        # 3. Run in a custom process pool:
        with concurrent.futures.ProcessPoolExecutor() as pool:
            result = await loop.run_in_executor(
                pool, cpu_bound)
            print('custom process pool', result)
    
    asyncio.run(main())

    协程模式

    https://www.cnblogs.com/callyblog/p/11220594.html

    import asyncio
    
    def callback(loop, i):
        print("success time {} {}".format(i, loop.time()))
    
    async def get_html(url):
        print("start get url")
        await asyncio.sleep(1)
        print("end get url")
    
    
    # 两种创建的方法
    if __name__ == "__main__":
        loop = asyncio.get_event_loop()
        # get_future = asyncio.ensure_future(get_html("http://www.imooc.com"))
        task = loop.create_task(get_html("http://www.imooc.com"))
        loop.run_until_complete(task) # 接收的是一个future对象

    高层接口(协程)

    https://docs.python.org/3/library/asyncio-task.html#coroutine

    import asyncio
    import random
    import time
    
    
    async def worker(name, queue):
        while True:
            # Get a "work item" out of the queue.
            sleep_for = await queue.get()
    
            # Sleep for the "sleep_for" seconds.
            await asyncio.sleep(sleep_for)
    
            # Notify the queue that the "work item" has been processed.
            queue.task_done()
    
            print(f'{name} has slept for {sleep_for:.2f} seconds')
    
    
    async def main():
        # Create a queue that we will use to store our "workload".
        queue = asyncio.Queue()
    
        # Generate random timings and put them into the queue.
        total_sleep_time = 0
        for _ in range(20):
            sleep_for = random.uniform(0.05, 1.0)
            total_sleep_time += sleep_for
            queue.put_nowait(sleep_for)
    
        # Create three worker tasks to process the queue concurrently.
        tasks = []
        for i in range(3):
            task = asyncio.create_task(worker(f'worker-{i}', queue))
            tasks.append(task)
    
        # Wait until the queue is fully processed.
        started_at = time.monotonic()
        await queue.join()
        total_slept_for = time.monotonic() - started_at
    
        # Cancel our worker tasks.
        for task in tasks:
            task.cancel()
        # Wait until all worker tasks are cancelled.
        await asyncio.gather(*tasks, return_exceptions=True)
    
        print('====')
        print(f'3 workers slept in parallel for {total_slept_for:.2f} seconds')
        print(f'total expected sleep time: {total_sleep_time:.2f} seconds')
    
    
    asyncio.run(main())

    评价

    https://zhuanlan.zhihu.com/p/82123111

    最近在做并行编程,多线程,多进程,多核的概念令人迷惑,总结一下:

    1. 计算机的cpu物理核数是同时可以并行的线程数量(cpu只能看到线程,线程是cpu调度分配的最小单位),由于超线程技术,实际上可以并行的线程数量通常是物理核数的两倍,这也是操作系统看到的核数。我们只care可以并行的线程数量,所以之后所说的核数是操作系统看到的核数,所指的核也是超线程技术之后的那个核(不是物理核)。
    2. 进程是操作系统资源分配(内存,显卡,磁盘)的最小单位,线程是执行调度(即cpu调度)的最小单位(cpu看到的都是线程而不是进程),一个进程可以有一个或多个线程,线程之间共享进程的资源,通过这样的范式,就可以减少进程的创建和销毁带来的代价,可以让进程少一点,保持相对稳定,不断去调度线程就好。如果计算机有多个cpu核,且计算机中的总的线程数量小于核数,那线程就可以并行运行在不同的核中,如果是单核多线程,那多线程之间就不是并行,而是并发,即为了均衡负载,cpu调度器会不断的在单核上切换不同的线程执行,但是我们说过,一个核只能运行一个线程,所以并发虽然让我们看起来不同线程之间的任务是并行执行的,但是实际上却由于增加了线程切换的开销使得代价更大了。如果是多核多线程,且线程数量大于核数,其中有些线程就会不断切换,并发执行,但实际上最大的并行数量还是当前这个进程中的核的数量,所以盲目增加线程数不仅不会让你的程序更快,反而会给你的程序增加额外的开销。
    3. 任务可以分为计算密集型和IO密集型,假设我们现在使用一个进程来完成这个任务,对计算密集型任务,可以使用【核心数】个线程,就可以占满cpu资源,进而可以充分利用cpu,如果再多,就会造成额外的开销;对于IO密集型任务(涉及到网络、磁盘IO的任务都是IO密集型任务),线程由于被IO阻塞,如果仍然用【核心数】个线程,cpu是跑不满的,于是可以使用更多个线程来提高cpu使用率。
    4. 实现并行计算有三种方式,多线程,多进程,多进程+多线程。如果是多进程,因为每个进程资源是独立的(地址空间和数据空间),就要在操作系统层面进行通信,如管道,队列,信号等;多线程的话会共享进程中的地址空间和数据空间,一个线程的数据可以直接提供给其他线程使用,但方便的同时会造成变量值的混乱,所以要通过线程锁来限制线程的执行
    5. 其他语言,CPU 是多核时是支持多个线程同时执行。但在 Python 中,无论是单核还是多核,一个进程同时只能由一个线程在执行。其根源是 GIL 的存在。GIL 的全称是 Global Interpreter Lock(全局解释器锁),来源是 Python 设计之初的考虑,为了数据安全所做的决定。某个线程想要执行,必须先拿到 GIL,我们可以把 GIL 看作是“通行证”,并且在一个 Python 进程中,GIL 只有一个。拿不到通行证的线程,就不允许进入 CPU 执行。所以多线程在python中很鸡肋。

    Python并行编程

    https://python-parallel-programmning-cookbook.readthedocs.io/zh_CN/latest/index.html

  • 相关阅读:
    find-the-distance-from-a-3d-point-to-a-line-segment
    Distance Point to Line Segment
    Shortest distance between a point and a line segment
    Splitting and Merging--区域分裂与合并算法
    手写区域分裂合并算法
    free online editor
    SQL server ide
    online c++ compiler
    online sql editor
    Web-based SQL editor
  • 原文地址:https://www.cnblogs.com/lightsong/p/13409929.html
Copyright © 2011-2022 走看看