zoukankan      html  css  js  c++  java
  • [LeetCode] 675. Cut Off Trees for Golf Event 为高尔夫赛事砍树

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-negative 2D map, in this map:

    1. 0 represents the obstacle can't be reached.
    2. 1 represents the ground can be walked through.
    3. The place with number bigger than 1 represents a tree can be walked through, and this positive number represents the tree's height.

    You are asked to cut off all the trees in this forest in the order of tree's height - always cut off the tree with lowest height first. And after cutting, the original place has the tree will become a grass (value 1).

    You will start from the point (0, 0) and you should output the minimum steps you need to walk to cut off all the trees. If you can't cut off all the trees, output -1 in that situation.

    You are guaranteed that no two trees have the same height and there is at least one tree needs to be cut off.

    Example 1:

    Input: 
    [
     [1,2,3],
     [0,0,4],
     [7,6,5]
    ]
    Output: 6

    Example 2:

    Input: 
    [
     [1,2,3],
     [0,0,0],
     [7,6,5]
    ]
    Output: -1

    Example 3:

    Input: 
    [
     [2,3,4],
     [0,0,5],
     [8,7,6]
    ]
    Output: 6
    Explanation: You started from the point (0,0) and you can cut off the tree in (0,0) directly without walking. 

    Hint: size of the given matrix will not exceed 50x50.

    为一个高尔夫赛事砍掉森林中所有高度大于1的树,要按从低到高的顺序砍。森林用一个2D的map来表示,0代表障碍物,无法通过。1代表地面,可以通过。其他整数代表是树和相应的高度,可以通过。

    解法:把是树的节点,按树高从低到高排序。然后从第一棵树开始,每次都用BFS求出和下一棵树之间的最短路径,然后累计路径和为结果。如果不能走到下一棵树,则返回-1。

    Python:

    class Solution(object):
        def cutOffTree(self, forest):
            """
            :type forest: List[List[int]]
            :rtype: int
            """
            def dot(p1, p2):
                return p1[0]*p2[0]+p1[1]*p2[1]
    
            def minStep(p1, p2):
                min_steps = abs(p1[0]-p2[0])+abs(p1[1]-p2[1])
                closer, detour = [p1], []
                lookup = set()
                while True:
                    if not closer:  # cannot find a path in the closer expansions
                        if not detour:  # no other possible path
                            return -1
                        # try other possible paths in detour expansions with extra 2-step cost
                        min_steps += 2
                        closer, detour = detour, closer
                    i, j = closer.pop()
                    if (i, j) == p2:
                        return min_steps
                    if (i, j) not in lookup:
                        lookup.add((i, j))
                        for I, J in (i+1, j), (i-1, j), (i, j+1), (i, j-1):
                            if 0 <= I < m and 0 <= J < n and forest[I][J] and (I, J) not in lookup:
                                is_closer = dot((I-i, J-j), (p2[0]-i, p2[1]-j)) > 0
                                (closer if is_closer else detour).append((I, J))
                return min_steps
    
            m, n = len(forest), len(forest[0])
            min_heap = []
            for i in xrange(m):
                for j in xrange(n):
                    if forest[i][j] > 1:
                        heapq.heappush(min_heap, (forest[i][j], (i, j)))
    
            start = (0, 0)
            result = 0
            while min_heap:
                tree = heapq.heappop(min_heap)
                step = minStep(start, tree[1])
                if step < 0:
                    return -1
                result += step
                start = tree[1]
            return result  

    C++:

    class Solution {
    public:
        int cutOffTree(vector<vector<int>>& forest) {
            int m = forest.size(), n = forest[0].size(), res = 0, row = 0, col = 0;
            vector<vector<int>> trees;
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (forest[i][j] > 1) trees.push_back({forest[i][j], i, j});
                }
            }
            sort(trees.begin(), trees.end());
            for (int i = 0; i < trees.size(); ++i) {
                int cnt = helper(forest, row, col, trees[i][1], trees[i][2]);
                if (cnt == -1) return -1;
                res += cnt;
                row = trees[i][1];
                col = trees[i][2];
            }
            return res;
        }
        int helper(vector<vector<int>>& forest, int row, int col, int treeRow, int treeCol) {
            if (row == treeRow && col == treeCol) return 0;
            int m = forest.size(), n = forest[0].size(), cnt = 0;
            queue<pair<int, int>> q{{{row, col}}};
            vector<vector<bool>> visited(m, vector<bool>(n, false));
            vector<vector<int>> dirs{{-1,0},{0,1},{1,0},{0,-1}};
            while (!q.empty()) {
                ++cnt;
                for (int i = q.size() - 1; i >= 0; --i) {
                    auto t = q.front(); q.pop();
                    for (auto dir : dirs) {
                        int x = t.first + dir[0], y = t.second + dir[1];
                        if (x < 0 || x >= m || y < 0 || y >= n || visited[x][y] || forest[x][y] == 0) continue;
                        if (x == treeRow && y == treeCol) return cnt;
                        visited[x][y] = true;
                        q.push({x, y});
                    }
                }
            }
            return -1;
        }
    };
    

      

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    Ceph的参数mon_osd_down_out_subtree_limit细解
    java:警告:[unchecked] 对作为普通类型 java.util.HashMap 的成员的put(K,V) 的调用未经检查
    Java 原始类型JComboBox的成员JComboBox(E())的调用 未经过检查
    Android draw Rect 坐标图示
    不用快捷键就能使用Eclipse的自动完成功能
    Java 窗体居中 通用代码
    Java文件复制删除操作合集
    Java Toolkit类用法
    DEVEXPRESS 破解方法
    如何使用Java执行cmd命令
  • 原文地址:https://www.cnblogs.com/lightwindy/p/8621412.html
Copyright © 2011-2022 走看看