zoukankan      html  css  js  c++  java
  • [LeetCode] 494. Target Sum 目标和

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

    Find out how many ways to assign symbols to make sum of integers equal to target S.

    Example 1:

    Input: nums is [1, 1, 1, 1, 1], S is 3. 
    Output: 5
    Explanation: 
    
    -1+1+1+1+1 = 3
    +1-1+1+1+1 = 3
    +1+1-1+1+1 = 3
    +1+1+1-1+1 = 3
    +1+1+1+1-1 = 3
    
    There are 5 ways to assign symbols to make the sum of nums be target 3. 

    Note:

    1. The length of the given array is positive and will not exceed 20.
    2. The sum of elements in the given array will not exceed 1000.
    3. Your output answer is guaranteed to be fitted in a 32-bit integer.

    给一个由非负整数组成的数组,和一个目标值,给数字前面加上正号或负号,然后求和,问和目标值相等的情况有多少。

    解法:递归,循环数组里的数字,调用递归函数,分别对目标值进行加上和减去当前数字,再调用递归,这样就会涵盖所有情况,若目标值为0了,则结果res自增1。

    Java:

     public int findTargetSumWays(int[] nums, int s) {
            int sum = 0;
            for (int n : nums)
                sum += n;
            return sum < s || (s + sum) % 2 > 0 ? 0 : subsetSum(nums, (s + sum) >>> 1); 
        }   
    
        public int subsetSum(int[] nums, int s) {
            int[] dp = new int[s + 1]; 
            dp[0] = 1;
            for (int n : nums)
                for (int i = s; i >= n; i--)
                    dp[i] += dp[i - n]; 
            return dp[s];
        } 
    

    Python:

    class Solution(object):
        def findTargetSumWays(self, nums, S):
            if not nums:
                return 0
            dic = {nums[0]: 1, -nums[0]: 1} if nums[0] != 0 else {0: 2}
            for i in range(1, len(nums)):
                tdic = {}
                for d in dic:
                    tdic[d + nums[i]] = tdic.get(d + nums[i], 0) + dic.get(d, 0)
                    tdic[d - nums[i]] = tdic.get(d - nums[i], 0) + dic.get(d, 0)
                dic = tdic
            return dic.get(S, 0)  

    C++:

    class Solution {
    public:
        int findTargetSumWays(vector<int>& nums, int s) {
            int sum = accumulate(nums.begin(), nums.end(), 0);
            return sum < s || (s + sum) & 1 ? 0 : subsetSum(nums, (s + sum) >> 1); 
        }   
    
        int subsetSum(vector<int>& nums, int s) {
            int dp[s + 1] = { 0 };
            dp[0] = 1;
            for (int n : nums)
                for (int i = s; i >= n; i--)
                    dp[i] += dp[i - n];
            return dp[s];
        }
    };
    

    C++:

    class Solution {
    public:
        int findTargetSumWays(vector<int>& nums, int S) {
            int res = 0;
            helper(nums, S, 0, res);
            return res;
        }
        void helper(vector<int>& nums, int S, int start, int& res) {
            if (start >= nums.size()) {
                if (S == 0) ++res;
                return;
            }
            helper(nums, S - nums[start], start + 1, res);
            helper(nums, S + nums[start], start + 1, res);
        }
    };
    

    C++:  使用dp记录中间值优化

    class Solution {
    public:
        int findTargetSumWays(vector<int>& nums, int S) {
            vector<unordered_map<int, int>> dp(nums.size());
            return helper(nums, S, 0, dp);
        }
        int helper(vector<int>& nums, int sum, int start, vector<unordered_map<int, int>>& dp) {
            if (start == nums.size()) return sum == 0;
            if (dp[start].count(sum)) return dp[start][sum];
            int cnt1 = helper(nums, sum - nums[start], start + 1, dp);
            int cnt2 = helper(nums, sum + nums[start], start + 1, dp);
            return dp[start][sum] = cnt1 + cnt2;
        }
    };  

    C++:

    class Solution {
    public:
        int findTargetSumWays(vector<int>& nums, int S) {
            int n = nums.size();
            vector<unordered_map<int, int>> dp(n + 1);
            dp[0][0] = 1;
            for (int i = 0; i < n; ++i) {
                for (auto &a : dp[i]) {
                    int sum = a.first, cnt = a.second;
                    dp[i + 1][sum + nums[i]] += cnt;
                    dp[i + 1][sum - nums[i]] += cnt;
                }
            }
            return dp[n][S];
        }
    };
    

    C++:

    class Solution {
    public:
        int findTargetSumWays(vector<int>& nums, int S) {
            unordered_map<int, int> dp;
            dp[0] = 1;
            for (int num : nums) {
                unordered_map<int, int> t;
                for (auto a : dp) {
                    int sum = a.first, cnt = a.second;
                    t[sum + num] += cnt;
                    t[sum - num] += cnt;
                }
                dp = t;
            }
            return dp[S];
        }
    };
    

      

    类似题目:

    [LeetCode] 282. Expression Add Operators 表达式增加操作符

      

     

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    性能相差7千倍的ToString方法
    重构打造爱因斯坦谜题最快算法
    Windows Phone 7将胜出的五条论据
    让火狐狸遨游起来
    What's your understanding about RIA?
    [English Practise]Action when meeting a problem at work
    linux socket编程
    nginx服务器的配置
    要搬到csdn了
    搭建一个全栈式的HTML5移动应用框架
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9723104.html
Copyright © 2011-2022 走看看