zoukankan      html  css  js  c++  java
  • [LeetCode] 304. Range Sum Query 2D

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

    Range Sum Query 2D
    The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

    Example:

    Given matrix = [
      [3, 0, 1, 4, 2],
      [5, 6, 3, 2, 1],
      [1, 2, 0, 1, 5],
      [4, 1, 0, 1, 7],
      [1, 0, 3, 0, 5]
    ]
    
    sumRegion(2, 1, 4, 3) -> 8
    sumRegion(1, 1, 2, 2) -> 11
    sumRegion(1, 2, 2, 4) -> 12 

    Note:

    1. You may assume that the matrix does not change.
    2. There are many calls to sumRegion function.
    3. You may assume that row1 ≤ row2 and col1 ≤ col2.

    303. Range Sum Query - Immutable 的变形,这题是2D数组,给左上角和右下角的点,这两点的行和列组成了一个矩形,求这个矩形里所有数字的和。

    解法:DP, 建立一个二维数组dp,其中dp[i][j]表示累计区间(0, 0)到(i, j)这个矩形区间所有数字的和,求(r1, c1)到(r2, c2)的矩形区间和时,只需dp[r2][c2] - dp[r2][c1 - 1] - dp[r1 - 1][c2] + dp[r1 - 1][c1 - 1]即可。

    Java:

    private int[][] dp;
    
    public NumMatrix(int[][] matrix) {
        if(   matrix           == null
           || matrix.length    == 0
           || matrix[0].length == 0   ){
            return;   
        }
        
        int m = matrix.length;
        int n = matrix[0].length;
        
        dp = new int[m + 1][n + 1];
        for(int i = 1; i <= m; i++){
            for(int j = 1; j <= n; j++){
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1] -dp[i - 1][j - 1] + matrix[i - 1][j - 1] ;
            }
        }
    }
    
    public int sumRegion(int row1, int col1, int row2, int col2) {
        int iMin = Math.min(row1, row2);
        int iMax = Math.max(row1, row2);
        
        int jMin = Math.min(col1, col2);
        int jMax = Math.max(col1, col2);
        
        return dp[iMax + 1][jMax + 1] - dp[iMax + 1][jMin] - dp[iMin][jMax + 1] + dp[iMin][jMin];    
    }
    

    Python:

    class NumMatrix(object):
          def __init__(self, matrix):
              if matrix is None or not matrix:
                  return
              n, m = len(matrix), len(matrix[0])
              self.sums = [ [0 for j in xrange(m+1)] for i in xrange(n+1) ]
              for i in xrange(1, n+1):
                  for j in xrange(1, m+1):
                      self.sums[i][j] = matrix[i-1][j-1] + self.sums[i][j-1] + self.sums[i-1][j] - self.sums[i-1][j-1]
        
    
          def sumRegion(self, row1, col1, row2, col2):
              row1, col1, row2, col2 = row1+1, col1+1, row2+1, col2+1
              return self.sums[row2][col2] - self.sums[row2][col1-1] - self.sums[row1-1][col2] + self.sums[row1-1][col1-1]
    

    Python:  

    # Time:  ctor:   O(m * n),
    #        lookup: O(1)
    # Space: O(m * n)
    
    class NumMatrix(object):
        def __init__(self, matrix):
            """
            initialize your data structure here.
            :type matrix: List[List[int]]
            """
            if not matrix:
                return
    
            m, n = len(matrix), len(matrix[0])
            self.__sums = [[0 for _ in xrange(n+1)] for _ in xrange(m+1)]
            for i in xrange(1, m+1):
                for j in xrange(1, n+1):
                    self.__sums[i][j] = self.__sums[i][j-1] + matrix[i-1][j-1]
            for j in xrange(1, n+1):
                for i in xrange(1, m+1):
                    self.__sums[i][j] += self.__sums[i-1][j]
    
        def sumRegion(self, row1, col1, row2, col2):
            """
            sum of elements matrix[(row1,col1)..(row2,col2)], inclusive.
            :type row1: int
            :type col1: int
            :type row2: int
            :type col2: int
            :rtype: int
            """
            return self.__sums[row2+1][col2+1] - self.__sums[row2+1][col1] - 
                   self.__sums[row1][col2+1] + self.__sums[row1][col1] 

    C++:

    class NumMatrix {
    private:
        int row, col;
        vector<vector<int>> sums;
    public:
        NumMatrix(vector<vector<int>> &matrix) {
            row = matrix.size();
            col = row>0 ? matrix[0].size() : 0;
            sums = vector<vector<int>>(row+1, vector<int>(col+1, 0));
            for(int i=1; i<=row; i++) {
                for(int j=1; j<=col; j++) {
                    sums[i][j] = matrix[i-1][j-1] + 
                                 sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] ;
                }
            }
        }
    
        int sumRegion(int row1, int col1, int row2, int col2) {
            return sums[row2+1][col2+1] - sums[row2+1][col1] - sums[row1][col2+1] + sums[row1][col1];
        }
    };
    

      

    类似题目:

    [LeetCode] 303. Range Sum Query - Immutable 区域和检索 - 不可变

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    WM_COMMAND 和 WM_NOTIFY 的区别
    C 游戏所要看的书
    Source Insight中文字体设置
    在 windows7 中使用 vs2003 时,“在文件中查找”导致无响应的问题
    解决VS2008 调试启动特别慢
    c++ 浅谈 new 的使用
    Access界面基础操作
    与孩子一起学编程12章
    YT工作日志-0911
    两种方式遍历二叉树--递归方式和非递归方式
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9808656.html
Copyright © 2011-2022 走看看