zoukankan      html  css  js  c++  java
  • POJ 2533 Longest Ordered Subsequence(dp LIS)

    Language:
    Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 33986   Accepted: 14892

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4
    

    Source

    Northeastern Europe 2002, Far-Eastern Subregion

    [Submit]   [Go Back]   [Status]   [Discuss]


    求最长递增子序列


    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<vector>
    
    #define L(x) (x<<1)
    #define R(x) (x<<1|1)
    #define MID(x,y) ((x+y)>>1)
    
    #define eps 1e-8
    using namespace std;
    #define N 1005
    
    int dp[N],n,a[N];
    
    int main()
    {
    	int i,j;
    	while(~scanf("%d",&n))
    	{
    		for(i=1;i<=n;i++)
    			scanf("%d",&a[i]);
    
    		int ans=1;
    
    		dp[1]=1;
    		int temp;
    		for(i=2;i<=n;i++)
    		{
    			temp=0;
    			for(j=1;j<i;j++)
    				if(a[j]<a[i]&&temp<=dp[j])
    				  temp=dp[j];
    
                dp[i]=temp+1;
    
    			if(dp[i]>ans)
    				ans=dp[i];
    		}
          printf("%d
    ",ans);
    	}
        return 0;
    }
    







  • 相关阅读:
    RPM的使用详细演示安装,删除和查询
    GCC 参数详解
    简述configure、pkgconfig、pkg_config_path三者的关系
    RPM查询篇
    Linux软件安装之RPM的安装技巧
    linux gcc 编译时头文件和库文件搜索路径
    嵌入式开发.C语言面试题
    GCC几个选项学习
    asp.net mvc 自定权限实现
    使用Jquery EasyUi常见问题解决方案
  • 原文地址:https://www.cnblogs.com/liguangsunls/p/6956671.html
Copyright © 2011-2022 走看看