zoukankan      html  css  js  c++  java
  • step by step带你fastText文本分类

    本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300.html
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End本文参考原文-http://bjbsair.com/2020-03-25/tech-info/6300/
    **写在前面
    **


    今天的教程是基于FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是我们常说的fastText。

    最让人欣喜的这篇论文配套提供了fasttext工具包。这个工具包代码质量非常高,论文结果一键还原,目前已经是包装地非常专业了,这是fastText官网和其github代码库,以及提供了python接口,可以直接通过pip安装。这样准确率高又快的模型绝对是实战利器。

    为了更好地理解fasttext原理,我们现在直接复现来一遍,但是代码中仅仅实现了最简单的基于单词的词向量求平均,并未使用b-gram的词向量,所以自己实现的文本分类效果会低于facebook开源的库。

    论文概览

    We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

    首先引用论文中的一段话来看看作者们是怎么评价fasttext模型的表现的。

    这篇论文的模型非常之简单,之前了解过word2vec的同学可以发现这跟CBOW的模型框架非常相似。

    【NLP实战】手把手带你fastText文本分类

    对应上面这个模型,比如输入是一句话,到就是这句话的单词或者是n-gram。每一个都对应一个向量,然后对这些向量取平均就得到了文本向量,然后用这个平均向量取预测标签。当类别不多的时候,就是最简单的softmax;当标签数量巨大的时候,就要用到「hierarchical softmax」了。

    模型真的很简单,也没什么可以说的了。下面提一下论文中的两个tricks:

    • 「hierarchical softmax」
      类别数较多时,通过构建一个霍夫曼编码树来加速softmax layer的计算,和之前word2vec中的trick相同
    • 「N-gram features」
      只用unigram的话会丢掉word order信息,所以通过加入N-gram features进行补充 用hashing来减少N-gram的存储

    看了论文的实验部分,如此简单的模型竟然能取得这么好的效果 !

    但是也有人指出论文中选取的数据集都是对句子词序不是很敏感的数据集,所以得到文中的试验结果并不奇怪。

    代码实现

    看完阉割版代码大家记得去看看源码噢~ 跟之前系列的一样,定义一个fastTextModel类,然后写网络框架,输入输出placeholder,损失,训练步骤等。

    class fastTextModel(BaseModel):  
        """  
        A simple implementation of fasttext for text classification  
        """  
        def __init__(self, sequence_length, num_classes, vocab_size,  
                     embedding_size, learning_rate, decay_steps, decay_rate,  
                     l2_reg_lambda, is_training=True,  
                     initializer=tf.random_normal_initializer(stddev=0.1)):  
            self.vocab_size = vocab_size  
            self.embedding_size = embedding_size  
            self.num_classes = num_classes  
            self.sequence_length = sequence_length  
            self.learning_rate = learning_rate  
            self.decay_steps = decay_steps  
            self.decay_rate = decay_rate  
            self.is_training = is_training  
            self.l2_reg_lambda = l2_reg_lambda  
            self.initializer = initializer  
            self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
            self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
            self.global_step = tf.Variable(0, trainable=False, name='global_step')  
            self.instantiate_weight()  
            self.logits = self.inference()  
            self.loss_val = self.loss()  
            self.train_op = self.train()  
            self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
            correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
        def instantiate_weight(self):  
            with tf.name_scope('weights'):  
                self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                                 initializer=self.initializer)  
                self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                    initializer=self.initializer)  
                self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
        def inference(self):  
            """  
            1. word embedding  
            2. average embedding  
            3. linear classifier  
            :return:  
            """  
            # embedding layer  
            with tf.name_scope('embedding'):  
                words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
                self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
            logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
            return logits  
        def loss(self):  
            # loss  
            with tf.name_scope('loss'):  
                losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
                data_loss = tf.reduce_mean(losses)  
                l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                    if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
                data_loss += l2_loss * self.l2_reg_lambda  
                return data_loss  
        def train(self):  
            with tf.name_scope('train'):  
                learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                           self.decay_steps, self.decay_rate,  
                                                           staircase=True)  
                train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                          learning_rate=learning_rate, optimizer='Adam')  
            return train_op  
    
    
    def prepocess():  
        """  
        For load and process data  
        :return:  
        """  
        print("Loading data...")  
        x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
        # bulid vocabulary  
        max_document_length = max(len(x.split(' ')) for x in x_text)  
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
        x = np.array(list(vocab_processor.fit_transform(x_text)))  
        # shuffle  
        np.random.seed(10)  
        shuffle_indices = np.random.permutation(np.arange(len(y)))  
        x_shuffled = x[shuffle_indices]  
        y_shuffled = y[shuffle_indices]  
        # split train/test dataset  
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
        del x, y, x_shuffled, y_shuffled  
        print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
        print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
        return x_train, y_train, vocab_processor, x_dev, y_dev  
    def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
        with tf.Graph().as_default():  
            session_conf = tf.ConfigProto(  
                # allows TensorFlow to fall back on a device with a certain operation implemented  
                allow_soft_placement= FLAGS.allow_soft_placement,  
                # allows TensorFlow log on which devices (CPU or GPU) it places operations  
                log_device_placement=FLAGS.log_device_placement  
            )  
            sess = tf.Session(config=session_conf)  
            with sess.as_default():  
                # initialize cnn  
                fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                          num_classes=y_train.shape[1],  
                          vocab_size=len(vocab_processor.vocabulary_),  
                          embedding_size=FLAGS.embedding_size,  
                          l2_reg_lambda=FLAGS.l2_reg_lambda,  
                          is_training=True,  
                          learning_rate=FLAGS.learning_rate,  
                          decay_steps=FLAGS.decay_steps,  
                          decay_rate=FLAGS.decay_rate  
                        )  
                # output dir for models and summaries  
                timestamp = str(time.time())  
                out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
                if not os.path.exists(out_dir):  
                    os.makedirs(out_dir)  
                print('Writing to {} 
    '.format(out_dir))  
                # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
                checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
                checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
                if not os.path.exists(checkpoint_dir):  
                    os.makedirs(checkpoint_dir)  
                saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
                # Write vocabulary  
                vocab_processor.save(os.path.join(out_dir, 'vocab'))  
                # Initialize all  
                sess.run(tf.global_variables_initializer())  
                def train_step(x_batch, y_batch):  
                    """  
                    A single training step  
                    :param x_batch:  
                    :param y_batch:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    _, step, loss, accuracy = sess.run(  
                        [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                def dev_step(x_batch, y_batch):  
                    """  
                    Evaluate model on a dev set  
                    Disable dropout  
                    :param x_batch:  
                    :param y_batch:  
                    :param writer:  
                    :return:  
                    """  
                    feed_dict = {  
                        fasttext.input_x: x_batch,  
                        fasttext.input_y: y_batch,  
                    }  
                    step, loss, accuracy = sess.run(  
                        [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                        feed_dict=feed_dict  
                    )  
                    time_str = datetime.datetime.now().isoformat()  
                    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
                # generate batches  
                batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
                # training loop  
                for batch in batches:  
                    x_batch, y_batch = zip(*batch)  
                    train_step(x_batch, y_batch)  
                    current_step = tf.train.global_step(sess, fasttext.global_step)  
                    if current_step % FLAGS.validate_every == 0:  
                        print('
     Evaluation:')  
                        dev_step(x_dev, y_dev)  
                        print('')  
                path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
                print('Save model checkpoint to {} 
    '.format(path))  
    def main(argv=None):  
        x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
        train(x_train, y_train, vocab_processor, x_dev, y_dev)  
    if __name__ == '__main__':  
        tf.app.run()
    

    本文参考资料

    [1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

    The End

  • 相关阅读:
    10.7
    10.5
    周六
    周五
    周四
    周三
    四则运算
    zabbix——yum安装
    Stirling's Formula
    CONTRASTIVE REPRESENTATION DISTILLATION
  • 原文地址:https://www.cnblogs.com/lihanlin/p/12571871.html
Copyright © 2011-2022 走看看