Redis Cluster是Redis官方提供的Redis集群功能
1.为什么要实现Redis Cluster
1.主从复制不能实现高可用
2.随着公司发展,用户数量增多,并发越来越多,业务需要更高的QPS,而主从复制中单机的QPS可能无法满足业务需求
3.数据量的考虑,现有服务器内存不能满足业务数据的需要时,单纯向服务器添加内存不能达到要求,此时需要考虑分布式需求,把数据分布到不同服务器上
4.网络流量需求:业务的流量已经超过服务器的网卡的上限值,可以考虑使用分布式来进行分流
5.离线计算,需要中间环节缓冲等别的需求
2.数据分布
2.1 为什么要做数据分布
全量数据,单机Redis节点无法满足要求,按照分区规则把数据分到若干个子集当中
2.2 常用数据分布方式之顺序分布
比如:1到100个数字,要保存在3个节点上,按照顺序分区,把数据平均分配三个节点上
1号到33号数据保存到节点1上,34号到66号数据保存到节点2上,67号到100号数据保存到节点3上
顺序分区常用在关系型数据库的设计
2.3 常用数据分布方式之哈希分布
例如1到100个数字,对每个数字进行哈希运算,然后对每个数的哈希结果除以节点数进行取余,余数为1则保存在第1个节点上,余数为2则保存在第2个节点上,余数为0则保存在第3个节点,这样可以保证数据被打散,同时保证数据分布的比较均匀
哈希分布方式分为三个分区方式:
2.3.1 节点取余分区
比如有100个数据,对每个数据进行hash运算之后,与节点数进行取余运算,根据余数不同保存在不同的节点上
节点取余方式是非常简单的一种分区方式
节点取余分区方式有一个问题:即当增加或减少节点时,原来节点中的80%的数据会进行迁移操作,对所有数据重新进行分布
节点取余分区方式建议使用多倍扩容的方式,例如以前用3个节点保存数据,扩容为比以前多一倍的节点即6个节点来保存数据,这样只需要适移50%的数据。数据迁移之后,第一次无法从缓存中读取数据,必须先从数据库中读取数据,然后回写到缓存中,然后才能从缓存中读取迁移之后的数据
节点取余方式优点:
客户端分片
配置简单:对数据进行哈希,然后取余
节点取余方式缺点:
数据节点伸缩时,导致数据迁移
迁移数量和添加节点数据有关,建议翻倍扩容
2.3.2 一致性哈希分区
一致性哈希原理:
将所有的数据当做一个token环,token环中的数据范围是0到2的32次方。然后为每一个数据节点分配一个token范围值,这个节点就负责保存这个范围内的数据。
对每一个key进行hash运算,被哈希后的结果在哪个token的范围内,则按顺时针去找最近的节点,这个key将会被保存在这个节点上。
在上面的图中,有4个key被hash之后的值在在n1节点和n2节点之间,按照顺时针规则,这4个key都会被保存在n2节点上,
如果在n1节点和n2节点之间添加n5节点,当下次有key被hash之后的值在n1节点和n5节点之间,这些key就会被保存在n5节点上面了
在上面的例子里,添加n5节点之后,数据迁移会在n1节点和n2节点之间进行,n3节点和n4节点不受影响,数据迁移范围被缩小很多
同理,如果有1000个节点,此时添加一个节点,受影响的节点范围最多只有千分之2
一致性哈希一般用在节点比较多的时候
一致性哈希分区优点:
采用客户端分片方式:哈希 + 顺时针(优化取余)
节点伸缩时,只影响邻近节点,但是还是有数据迁移
一致性哈希分区缺点:
翻倍伸缩,保证最小迁移数据和负载均衡
2.3.3 虚拟槽分区
虚拟槽分区是Redis Cluster采用的分区方式
预设虚拟槽,每个槽就相当于一个数字,有一定范围。每个槽映射一个数据子集,一般比节点数大
Redis Cluster中预设虚拟槽的范围为0到16383
步骤:
1.把16384槽按照节点数量进行平均分配,由节点进行管理
2.对每个key按照CRC16规则进行hash运算
3.把hash结果对16383进行取余
4.把余数发送给Redis节点
5.节点接收到数据,验证是否在自己管理的槽编号的范围
如果在自己管理的槽编号范围内,则把数据保存到数据槽中,然后返回执行结果
如果在自己管理的槽编号范围外,则会把数据发送给正确的节点,由正确的节点来把数据保存在对应的槽中
需要注意的是:Redis Cluster的节点之间会共享消息,每个节点都会知道是哪个节点负责哪个范围内的数据槽
虚拟槽分布方式中,由于每个节点管理一部分数据槽,数据保存到数据槽中。当节点扩容或者缩容时,对数据槽进行重新分配迁移即可,数据不会丢失。
虚拟槽分区特点:
使用服务端管理节点,槽,数据:例如Redis Cluster
可以对数据打散,又可以保证数据分布均匀
2.3 顺序分布与哈希分布的对比
3.Redis Cluster基本架构
3.1 节点
Redis Cluster是分布式架构:即Redis Cluster中有多个节点,每个节点都负责进行数据读写操作
每个节点之间会进行通信。
3.2 meet操作
节点之间会相互通信
meet操作是节点之间完成相互通信的基础,meet操作有一定的频率和规则
3.3 分配槽
把16384个槽平均分配给节点进行管理,每个节点只能对自己负责的槽进行读写操作
由于每个节点之间都彼此通信,每个节点都知道另外节点负责管理的槽范围
客户端访问任意节点时,对数据key按照CRC16规则进行hash运算,然后对运算结果对16383进行取作,如果余数在当前访问的节点管理的槽范围内,则直接返回对应的数据
如果不在当前节点负责管理的槽范围内,则会告诉客户端去哪个节点获取数据,由客户端去正确的节点获取数据
3.4 复制
保证高可用,每个主节点都有一个从节点,当主节点故障,Cluster会按照规则实现主备的高可用性
对于节点来说,有一个配置项:cluster-enabled,即是否以集群模式启动
3.5 客户端路由
3.5.1 moved重定向
1.每个节点通过通信都会共享Redis Cluster中槽和集群中对应节点的关系
2.客户端向Redis Cluster的任意节点发送命令,接收命令的节点会根据CRC16规则进行hash运算与16383取余,计算自己的槽和对应节点
3.如果保存数据的槽被分配给当前节点,则去槽中执行命令,并把命令执行结果返回给客户端
4.如果保存数据的槽不在当前节点的管理范围内,则向客户端返回moved重定向异常
5.客户端接收到节点返回的结果,如果是moved异常,则从moved异常中获取目标节点的信息
6.客户端向目标节点发送命令,获取命令执行结果
需要注意的是:客户端不会自动找到目标节点执行命令
槽命中:直接返回
[root@mysql ~]# redis-cli -p 9002 cluster keyslot hello
(integer) 866
槽不命中:moved异常
[root@mysql ~]# redis-cli -p 9002 cluster keyslot php
(integer) 9244
[root@mysql ~]# redis-cli -c -p 9002
127.0.0.1:9002> cluster keyslot hello
(integer) 866
127.0.0.1:9002> set hello world
-> Redirected to slot [866] located at 192.168.81.100:9003
OK
192.168.81.100:9003> cluster keyslot python
(integer) 7252
192.168.81.100:9003> set python best
-> Redirected to slot [7252] located at 192.168.81.101:9002
OK
192.168.81.101:9002> get python
"best"
192.168.81.101:9002> get hello
-> Redirected to slot [866] located at 192.168.81.100:9003
"world"
192.168.81.100:9003> exit
[root@mysql ~]# redis-cli -p 9002
127.0.0.1:9002> cluster keyslot python
(integer) 7252
127.0.0.1:9002> set python best
OK
127.0.0.1:9002> set hello world
(error) MOVED 866 192.168.81.100:9003
127.0.0