zoukankan      html  css  js  c++  java
  • 论文阅读(Zhuoyao Zhong——【aixiv2016】DeepText A Unified Framework for Text Proposal Generation and Text Detection in Natural Images)

     

    Zhuoyao Zhong——【aixiv2016】DeepText A Unified Framework for Text Proposal Generation and Text Detection in Natural Images


    目录

    • 作者和相关链接
    • 方法概括
    • 创新点和贡献
    • 方法细节
    • 实验结果
    • 问题讨论
    • 总结与收获点
    • 参考文献

    • 作者和相关链接

      • 作者
        • Zhuoyao Zhong, z.zhuoyao@mail.scut.sdu.cn
          Lianwen Jin, lianwen.jin@gmail.com
          Shuye Zhang, shuye.cheung@gmail.com
          Ziyong Feng, feng.ziyong@mail.scut.edu.cn
        • School of Electronic and Information Engineering South China University of Technology Guangzhou, China
      • 论文下载
    • 方法概括

      • 方法称为DeepText(此方法不是Google的DeepText哦),先用Inception-RPN提取候选的单词区域,再利用一个text-detection网络过滤候选区域中的噪声区域,最后对重叠的box进行投票和非极大值抑制
    • 创新点和贡献

      • fasterRCNN进行改进用在文字检测上
        • Inception-RPN:RPN后接Inception,来提取候选单词区域(包括2类classification和box regression)
          • anchor的大小更加适合检测单词:4scales(32, 48, 64, 80)*6 aspect ratio(0.2, 0.5, 0.8, 1.0, 1.2, 1.5) = 24种prior bounding box
          • Inception:3*3 conv, 5*5 conv, 3*3 max-pooling
        • Multi-level region-of-interest pooling(MLRP): ROI pooling从原来只用Conv5变成了Conv5+Conv4的两层(MLRP)
        • Ambiguous Text Category(ATC): 把文字和非文字的两类变成了三类,文字(IOU>0.5),非文字(IOU<0.2),有歧义的文字(IOU在0.2~0.5之间),原理是加入了更多的监督信息,使得分类效果更好
      • 对重叠box的去重方法(亮点不多)
      • 实验结果(F值)很高,ICDAR2011-0.83,ICDAR2013-0.85,速度约是平均每张图像1.7s(gpu k40)
    • 方法细节

      • 网络框架图(Inception-RPN+text detection):两个网络,Inception-RPN和text detection网络共享了conv1~conv5(来自于VGG16)。

      • 实际测试时流程:
        1. 输入一张图像,经过Conv1~Conv5生成卷积后的feature map
        2. feature map输入到Inception-RPN得到候选区域(score, bounding box)
        3. 候选区域经过非极大值抑制,选择前k个proposals
        4. 把k个proposals对应的在1.中Conv5生成的feature map上提取每个proposal的卷积特征,输入到text detection网络中得到每个proposal的score和Bounding box(regression调整过的)
        5. 对得到的检测结果(重复,互相包含)进行迭代投票和过滤,找到分数最高的最优检测结果
      • Ambiguous Text Category(ATC)的出发点
        • 如下图,按照一般的IOU>0.5为正样本,IOU<0.5为负样本,会导致单词串的某一段本该属于正样本的被当做负样本,对分类造成干扰,因此,更好的方法是把IOU>0.5的当正样本,IOU<0.2的当负样本,IOU处在中间的这部分单独成一类,表示歧义的一类,这样会使得分类准确率更高

     

      • Multi-level region-of-interest pooling(MLRP)的修改
        • VGG-16的模型配置

        • ROI Pooling的修改:将Conv4_3和Conv5_3(即Conv4的第三层卷积和Conv5的第三层卷积)的feature map单独进行ROI pooling,再把这两层Pooling后的feature map用一个1*1的卷积进行融合,这里1*1的卷积除了融合多通道(两层)信息,还有一个作用,就是降维,为下一步的FC做准备。

      • 训练过程
        • 多任务损失函数
          • 总的损失(p和p*表示测试和gt的label, t和t*是测试和gt的bounding box,t = {tx, ty,tw, th}

          • Lcls是softmax loss,分类误差(下图参考softmax回归

          • Lreg是smooth-L1 loss,回归误差(下图来自论文参考文献1

     

          • 详细算法过程(讲真,太详细了有点)

          • 算法思路简述:同一个样本,先用Inception-RPN训练,再训练text detection网络,detection网络要从Inception-RPN网络中选择,最后的时候更新整个网络权值,共享的部分要把两个模块的权值更新都加上。
      • 启发式后处理
        • 包括迭代bounding box的投票(参考文献2)和过滤两个部分,实际上就是个去重的过程,文章细节也没怎么讲
    • 实验结果

      • 值得一提的是文中的模型训练数据竟然只有4072个样本!!!
      • 证明Inception-RPN比原始RPN,SS,Edgebox等方法好

      • 证明MLRP和ATC的作用

     

      • ICDAR2011

     

      • ICDAR2013

      • 效果示例图

    • 问题讨论

      • 文中没有给出中间结果的示例图,比如inception-RPN之后得到的结果
    • 总结与收获点

      • 文中比较好的参考点是作者对fasterRCNN做的几个改进(在创新点中总结了)
      • 从实验结果上看,无论是F值还是速度,都确实挺好的,学习了~~
      • 一直想看的几篇文章,先mark一下
        • M. Busta, L. Neumann, and J. Matas. Fastext: Efficient unconstrained scene text detector. In Proc. ICCV, 2015.
        • C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proc. CVPR, 2015.
        • A. Veit, T. Matera, L. Neumann, J. Matas, and S. Belongie. Coco-text: Dataset and benchmark for text detection and recognition in natural images. arxiv preprint arXiv:1601.07140, 2016.
        • X. Yin, X. Yin, K. Huang, and H. Hao. Robust text detection in natural scene images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 36(5):970– 983, 2014.
        • S. Zhang, M. Lin, T. Chen, L. Jin, and L. Lin. Character proposal network for robust text extraction. In Proc. ICASSP, 2016.

    • 参考文献

      1. R. Girshick. Fast r-cnn. In Proc. ICCV, 2015.
      2. S. Gidaris and N. Komodakis. Object detection via a multiregion & semantic segmentation-aware cnn model. In Proc. ICCV, 2015.
  • 相关阅读:
    第08组 Alpha冲刺(4/6)
    2019 SDN阅读作业
    第08组 Alpha冲刺(3/6)
    2019 SDN上机第3次作业
    第08组 Alpha冲刺(2/6)
    答疑
    八、对抗样本1
    九、产生和防御对抗样本的新方法 | 分享总结--廖方舟(论文11)
    02-NLP-08-条件随机场与应用
    02-NLP-07-词向量及相关应用
  • 原文地址:https://www.cnblogs.com/lillylin/p/6118268.html
Copyright © 2011-2022 走看看