Zhuoyao Zhong——【aixiv2016】DeepText A Unified Framework for Text Proposal Generation and Text Detection in Natural Images
目录
- 作者和相关链接
- 方法概括
- 创新点和贡献
- 方法细节
- 实验结果
- 问题讨论
- 总结与收获点
- 参考文献
-
作者和相关链接
- 作者
- Zhuoyao Zhong, z.zhuoyao@mail.scut.sdu.cn
Lianwen Jin, lianwen.jin@gmail.com
Shuye Zhang, shuye.cheung@gmail.com
Ziyong Feng, feng.ziyong@mail.scut.edu.cn - School of Electronic and Information Engineering South China University of Technology Guangzhou, China
- Zhuoyao Zhong, z.zhuoyao@mail.scut.sdu.cn
- 论文下载
- 作者
-
方法概括
- 方法称为DeepText(此方法不是Google的DeepText哦),先用Inception-RPN提取候选的单词区域,再利用一个text-detection网络过滤候选区域中的噪声区域,最后对重叠的box进行投票和非极大值抑制
-
创新点和贡献
- 对fasterRCNN进行改进用在文字检测上
- Inception-RPN:RPN后接Inception,来提取候选单词区域(包括2类classification和box regression)
- anchor的大小更加适合检测单词:4scales(32, 48, 64, 80)*6 aspect ratio(0.2, 0.5, 0.8, 1.0, 1.2, 1.5) = 24种prior bounding box
- Inception:3*3 conv, 5*5 conv, 3*3 max-pooling
- Multi-level region-of-interest pooling(MLRP): ROI pooling从原来只用Conv5变成了Conv5+Conv4的两层(MLRP)
- Ambiguous Text Category(ATC): 把文字和非文字的两类变成了三类,文字(IOU>0.5),非文字(IOU<0.2),有歧义的文字(IOU在0.2~0.5之间),原理是加入了更多的监督信息,使得分类效果更好
- Inception-RPN:RPN后接Inception,来提取候选单词区域(包括2类classification和box regression)
- 对重叠box的去重方法(亮点不多)
- 实验结果(F值)很高,ICDAR2011-0.83,ICDAR2013-0.85,速度约是平均每张图像1.7s(gpu k40)
- 对fasterRCNN进行改进用在文字检测上
-
方法细节
- 网络框架图(Inception-RPN+text detection):两个网络,Inception-RPN和text detection网络共享了conv1~conv5(来自于VGG16)。
-
- 实际测试时流程:
- 输入一张图像,经过Conv1~Conv5生成卷积后的feature map
- feature map输入到Inception-RPN得到候选区域(score, bounding box)
- 候选区域经过非极大值抑制,选择前k个proposals
- 把k个proposals对应的在1.中Conv5生成的feature map上提取每个proposal的卷积特征,输入到text detection网络中得到每个proposal的score和Bounding box(regression调整过的)
- 对得到的检测结果(重复,互相包含)进行迭代投票和过滤,找到分数最高的最优检测结果
- Ambiguous Text Category(ATC)的出发点
- 如下图,按照一般的IOU>0.5为正样本,IOU<0.5为负样本,会导致单词串的某一段本该属于正样本的被当做负样本,对分类造成干扰,因此,更好的方法是把IOU>0.5的当正样本,IOU<0.2的当负样本,IOU处在中间的这部分单独成一类,表示歧义的一类,这样会使得分类准确率更高
- 实际测试时流程:
-
- Multi-level region-of-interest pooling(MLRP)的修改
- VGG-16的模型配置
- Multi-level region-of-interest pooling(MLRP)的修改
-
-
- ROI Pooling的修改:将Conv4_3和Conv5_3(即Conv4的第三层卷积和Conv5的第三层卷积)的feature map单独进行ROI pooling,再把这两层Pooling后的feature map用一个1*1的卷积进行融合,这里1*1的卷积除了融合多通道(两层)信息,还有一个作用,就是降维,为下一步的FC做准备。
-
-
- 训练过程
- 多任务损失函数
- 总的损失(p和p*表示测试和gt的label, t和t*是测试和gt的bounding box,t = {tx, ty,tw, th}
-
-
- Lcls是softmax loss,分类误差(下图参考softmax回归)
-
-
-
- Lreg是smooth-L1 loss,回归误差(下图来自论文参考文献1)
-
-
-
- 详细算法过程(讲真,太详细了有点)
-
-
-
-
- 算法思路简述:同一个样本,先用Inception-RPN训练,再训练text detection网络,detection网络要从Inception-RPN网络中选择,最后的时候更新整个网络权值,共享的部分要把两个模块的权值更新都加上。
-
- 启发式后处理
- 包括迭代bounding box的投票(参考文献2)和过滤两个部分,实际上就是个去重的过程,文章细节也没怎么讲
-
-
实验结果
- 值得一提的是文中的模型训练数据竟然只有4072个样本!!!
- 证明Inception-RPN比原始RPN,SS,Edgebox等方法好
-
- 证明MLRP和ATC的作用
-
- ICDAR2011
-
- ICDAR2013
-
- 效果示例图
-
问题讨论
- 文中没有给出中间结果的示例图,比如inception-RPN之后得到的结果
-
总结与收获点
- 文中比较好的参考点是作者对fasterRCNN做的几个改进(在创新点中总结了)
- 从实验结果上看,无论是F值还是速度,都确实挺好的,学习了~~
- 一直想看的几篇文章,先mark一下
- M. Busta, L. Neumann, and J. Matas. Fastext: Efficient unconstrained scene text detector. In Proc. ICCV, 2015.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proc. CVPR, 2015.
- A. Veit, T. Matera, L. Neumann, J. Matas, and S. Belongie. Coco-text: Dataset and benchmark for text detection and recognition in natural images. arxiv preprint arXiv:1601.07140, 2016.
- X. Yin, X. Yin, K. Huang, and H. Hao. Robust text detection in natural scene images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 36(5):970– 983, 2014.
- S. Zhang, M. Lin, T. Chen, L. Jin, and L. Lin. Character proposal network for robust text extraction. In Proc. ICASSP, 2016.
-
参考文献
- R. Girshick. Fast r-cnn. In Proc. ICCV, 2015.
- S. Gidaris and N. Komodakis. Object detection via a multiregion & semantic segmentation-aware cnn model. In Proc. ICCV, 2015.