题目
题解
按位计算贡献,(dp[i])代表前(i)位的答案。第(i)位的贡献如下:
- 当(n)为偶数时,如果第(i)位全为1,那么前(i-1)位可以随便取;
- 当(n)为奇数时,第(i)位不能全为1;
- 如果第(i)位不全为1,则第(i)位只能有偶数个1,贡献为((2^{n-1}-[n m is even])cdot dp[i-1])。
由于1的个数的奇偶是等概率的,所以(k)位二进制数奇数个1和偶数个1的数的个数相等,均为(2^{k-1})。
直接O(n)递推即可。
#include <bits/stdc++.h>
#define endl '
'
#define IOS std::ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define mp make_pair
#define seteps(N) fixed << setprecision(N)
typedef long long ll;
using namespace std;
/*-----------------------------------------------------------------*/
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
#define INF 0x3f3f3f3f
const int N = 3e5 + 10;
const int M = 1e9 + 7;
const double eps = 1e-5;
ll pw[N];
ll dp[N];
inline ll qpow(ll a, ll b, ll m) {
ll res = 1;
while(b) {
if(b & 1) res = (res * a) % m;
a = (a * a) % m;
b = b >> 1;
}
return res;
}
int main() {
IOS;
pw[0] = 1;
for(int i = 1; i < N; i++) pw[i] = pw[i - 1] * 2 % M;
int t;
cin >> t;
while(t--) {
int n, k;
cin >> n >> k;
dp[0] = 1;
if(!(n % 2)) {
for(int i = 1; i <= k; i++) {
dp[i] = (qpow(pw[i - 1], n, M) + (pw[n - 1] - 1) * dp[i - 1] % M) % M;
}
} else {
for(int i = 1; i <= k; i++) {
dp[i] = (pw[n - 1] + 1) * dp[i - 1] % M;
}
}
cout << dp[k] << endl;
}
}