zoukankan      html  css  js  c++  java
  • SMP多核启动

    在 Linux系统中,对于多核的ARM芯片而言,在Biotron代码中,每个CPU都会识别自身ID,如果ID是0,则引导Bootloader和 Linux内核执行,如果ID不是0,则Biotron一般在上电时将自身置于WFI或者WFE状态,并等待CPU0给其发CPU核间中断或事件(一般通过SEV指令)以唤醒它。一个典型的多核 Linux启动过程如图20.6所示。
    被CPU0唤醒的CPUn可以在运行过程中进行热插拔,譬如运行如下命令即可卸载CPU1,并且将CPUI上的任务全部迁移到其他CPU中:

    # echo 0 > /sys/devices/system/cpu/cpu1/online
    

    同理,运行如下命令可以再次启动CPU1:

    # echo 1 > /sys/devices/system/cpu/cpu1/online
    

    之后CPU1会主动参与系统中各个CPU之间的运行任务的负载均衡工作;

    CPUO唤醒其他CPU的动作在内核中被封装为一个 smp_operations的结构体,对于ARM而言,它定义于 arch/arm/include/asm/smp.h中。该结构体的成员函数如代码清单所示。

    
    struct smp_operations {
    #ifdef CONFIG_SMP
    	/*
    	 * Setup the set of possible CPUs (via set_cpu_possible)
    	 */
    	void (*smp_init_cpus)(void);
    	/*
    	 * Initialize cpu_possible map, and enable coherency
    	 */
    	void (*smp_prepare_cpus)(unsigned int max_cpus);
    
    	/*
    	 * Perform platform specific initialisation of the specified CPU.
    	 */
    	void (*smp_secondary_init)(unsigned int cpu);
    	/*
    	 * Boot a secondary CPU, and assign it the specified idle task.
    	 * This also gives us the initial stack to use for this CPU.
    	 */
    	int  (*smp_boot_secondary)(unsigned int cpu, struct task_struct *idle);
    #ifdef CONFIG_HOTPLUG_CPU
    	int  (*cpu_kill)(unsigned int cpu);
    	void (*cpu_die)(unsigned int cpu);
    	int  (*cpu_disable)(unsigned int cpu);
    #endif
    #endif
    };
    
    

    CPUO唤醒其他CPU的动作在内核中被封装为一个 smp_operations 的结构体,对于ARM而言,它定义于 arch/arm/include/asm/smp.h中。该结构体的成员函数如代码清单所示。

    DT_MACHINE_START(VEXPRESS DT,"ARM-Versatile Express)
    .dt_compat = v2m_dt_match,
    .smp = smp_ops(express_smp_ops),
    .map_io = v2m_dt_map_io,
    MACHINE_END
    

    通过 arch/arm/mach-vexpress/platsmp.c的实现代码可以看出, smp_operations的成员函数smp_init_cpus(),即 vexpress_smp_init_cpus调用的ct_ca9x4_init_cpu_map(会探测SoC内CPU核的个数,并通过 set_cpu_possible设置这些CPU可见。
    smp_operations的成员函数 smp_prepare_cpus,即 vexpress_smp_prepare_cpus则会通过v2m_flags_set( virt_to_phys( versatile_secondary_startup)设置其他CPU的启动地址为versatile_secondary_startup,如代码清单所示。
    smp_prepare_cpus()设置CPU1...n启动地址:

    
    static void __init vexpress_smp_prepare_cpus(unsigned int max_cpus)
    {
    	/*
    	 * Initialise the present map, which describes the set of CPUs
    	 * actually populated at the present time.
    	 */
    	if (ct_desc)
    		ct_desc->smp_enable(max_cpus);
    	else
    		vexpress_dt_smp_prepare_cpus(max_cpus);
    
    	/*
    	 * Write the address of secondary startup into the
    	 * system-wide flags register. The boot monitor waits
    	 * until it receives a soft interrupt, and then the
    	 * secondary CPU branches to this address.
    	 */
    	vexpress_flags_set(virt_to_phys(versatile_secondary_startup));
    }
    
    

    注意这部分具体实现方式是与SOC相关的,由芯片设计及芯片内部的Bootrom决定。对于VEXPRESS来讲,设置方法如下:

    void __init v2m_flags_set(u32 data)
    {
        writel(~0, v2m_sysreg_base + V2M_SYS_FLAGSCLR);
        writel(data, v2m_sysreg_base + V2M_SYS_FLAGSCLR);
    }
    

    即填充 v2m_sysreg_base+V2M_SYS_FLAGSCLR标记清除寄存器为0xFFFFFFFF,将CPU1...n初始启动执行的指令地址填入v2m_sysreg_base+V2M_SYS_FLAGSSET寄存器。这两个地址由芯片内部的Bootrom程序设定的。填入的CPU1...n的起始地址都通过virt_to_phys转化为物理地址,因为此时CPU1...n的MMU尚未开启;
    比较关键的是smp_operations的成员函数smp_boot_secondary(),它是完成CPU最终唤醒的工作,对于本例而言,versatile_boot_secondary()
    CPU0通过终端唤醒其他CPU:

    /*
     * Write pen_release in a way that is guaranteed to be visible to all
     * observers, irrespective of whether they're taking part in coherency
     * or not.  This is necessary for the hotplug code to work reliably.
     */
    static void __cpuinit write_pen_release(int val)
    {
    	pen_release = val;
    	smp_wmb();
    	__cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release));
    	outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));
    }
    
    int __cpuinit versatile_boot_secondary(unsigned int cpu, struct task_struct *idle)
    {
    	unsigned long timeout;
    
    	/*
    	 * Set synchronisation state between this boot processor
    	 * and the secondary one
    	 */
    	spin_lock(&boot_lock);
    
    	/*
    	 * This is really belt and braces; we hold unintended secondary
    	 * CPUs in the holding pen until we're ready for them.  However,
    	 * since we haven't sent them a soft interrupt, they shouldn't
    	 * be there.
    	 */
    	write_pen_release(cpu_logical_map(cpu));
    
    	/*
    	 * Send the secondary CPU a soft interrupt, thereby causing
    	 * the boot monitor to read the system wide flags register,
    	 * and branch to the address found there.
    	 */
    	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
    
    	timeout = jiffies + (1 * HZ);
    	while (time_before(jiffies, timeout)) {
    		smp_rmb();
    		if (pen_release == -1)
    			break;
    
    		udelay(10);
    	}
    
    	/*
    	 * now the secondary core is starting up let it run its
    	 * calibrations, then wait for it to finish
    	 */
    	spin_unlock(&boot_lock);
    
    	return pen_release != -1 ? -ENOSYS : 0;
    }
    
    

    调用的 write_pen_release会将 pen_release变量设置为要唤醒的CPU核的CPU号 cpu_logical_map(cpu),而后通过 arch_send_wakeup_ipi mask给要唤醒的CPU发IPI中断,这个时候,被唤醒的CPU会退出WFI状态并从前面 smp_operations中的smp_prepare_cpus成员函数,即 vexpress_smp_prepare_cpus里通过 v2m_flags_set()设置的起始地址 versatile_secondary_startup开始执行,如果顺利的话,该CPU会将原先为正数的pen_release写为-1,以便CPU0从等待pen_release成为-1的循环跳出;

    versatile_secondary_startup实现于arch/arm/plat-versatile/headsmp.S中,是一段汇编,如下代码所示:

    
    /*
     * Realview/Versatile Express specific entry point for secondary CPUs.
     * This provides a "holding pen" into which all secondary cores are held
     * until we're ready for them to initialise.
     */
    ENTRY(versatile_secondary_startup)
    	mrc	p15, 0, r0, c0, c0, 5
    	bic	r0, #0xff000000
    	adr	r4, 1f
    	ldmia	r4, {r5, r6}
    	sub	r4, r4, r5
    	add	r6, r6, r4
    pen:	ldr	r7, [r6]
    	cmp	r7, r0
    	bne	pen
    
    	/*
    	 * we've been released from the holding pen: secondary_stack
    	 * should now contain the SVC stack for this core
    	 */
    	b	secondary_startup
    
    	.align
    1:	.long	.
    	.long	pen_release
    ENDPROC(versatile_secondary_startup)
    
    

    上述循环代码的循环是等待pen_release变量称为CPU0设置的cpu_logical_map(cpu),一般就直接成立了。第16行调用内核通用的secondary_startup()函数,经过一系列初始化(如MMU等),最终新的被唤醒的CPU将调用smp_operationssmp_secondary_init()的成员函数,对于本例为versatile_secondary_init()

    void __cpuinit versatile_secondary_init(unsigned int cpu)
    {
    	/*
    	 * let the primary processor know we're out of the
    	 * pen, then head off into the C entry point
    	 */
    	write_pen_release(-1);
    
    	/*
    	 * Synchronise with the boot thread.
    	 */
    	spin_lock(&boot_lock);
    	spin_unlock(&boot_lock);
    }
    

    上述代码会将pen_release写为-1,于是CPU0还在执行代码的versatile_boot_secondary()函数中的如下循环就退出了:

    timeout = jiffies + (1 * HZ);
    while (time_before(jiffies, timeout)) {
    	smp_rmb();
    	if (pen_release == -1)
    		break;
    
    	udelay(10);
    }
    

    这样CPU0就知道目标CPU已经被正确地唤醒,此后CPU0和新唤醒的其他CPU各自运行。整个系统在运行过程中会进行实时进程和正常进程的动态负载均衡。

    下图总结了前文提到的vexpress_smp_prepare_cpus()versatile_boot_secondary()write_pen_release()versatile_secondary_startup()versatile_secondary_init()这些函数的执行顺序;

  • 相关阅读:
    css雪碧图生成工具4.3更新
    移动端webapp自适应实践(css雪碧图制作小工具实践)图文并茂
    css雪碧图生成工具4.2更新
    手机端页面rem自适应脚本
    css雪碧图生成工具4.1更新
    V4.0到来了,css雪碧图生成工具4.0更新啦
    css sprite,css雪碧图生成工具V3.0更新
    css sprite css雪碧图生成工具
    CSS3 Loading(加载)动画效果
    js new
  • 原文地址:https://www.cnblogs.com/linhaostudy/p/9371562.html
Copyright © 2011-2022 走看看