zoukankan      html  css  js  c++  java
  • 51nod 1804 小C的多边形(构造)

    首先可以算出无解的充分不必要条件,所有边的和为sum=3*((n-1)*n)/2,如果sum%n!=0显然无解。

    也就是说n为奇数必然无解。现在考虑n为偶数的情况。

    不妨假设n为偶数有解,现在考虑如何将这个解构造出来。

    设此时n边形的为2*k+1,那么也就说,内边的每相邻两个边的和要为{k+2....3*k+2}

    把边构造成这个样子即可。

    k+1 1 k+2 2 k+3......2*k+1.

    另外这个oj的读入效率真是感人肺腑啊。。。

    # include <cstdio>
    # include <cstring>
    # include <cstdlib>
    # include <iostream>
    # include <vector>
    # include <queue>
    # include <stack>
    # include <map>
    # include <bitset>
    # include <set>
    # include <cmath>
    # include <algorithm>
    using namespace std;
    # define lowbit(x) ((x)&(-x))
    # define pi acos(-1.0)
    # define eps 1e-8
    # define MOD 1000000007
    # define INF 1000000000
    # define mem(a,b) memset(a,b,sizeof(a))
    # define FOR(i,a,n) for(int i=a; i<=n; ++i)
    # define FO(i,a,n) for(int i=a; i<n; ++i)
    # define bug puts("H");
    # define lch p<<1,l,mid
    # define rch p<<1|1,mid+1,r
    # define mp make_pair
    # define pb push_back
    typedef pair<int,int> PII;
    typedef vector<int> VI;
    # pragma comment(linker, "/STACK:1024000000,1024000000")
    typedef long long LL;
    inline int Scan() {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    inline void Out(int a) {
        if(a<0) {putchar('-'); a=-a;}
        if(a>=10) Out(a/10);
        putchar(a%10+'0');
    }
    const int N=105;
    //Code begin...
    
    int main ()
    {
        int n;
        scanf("%d",&n);
        if (n&1) {puts("0"); return 0;}
        int k=(n-1)/2;
        for (int i=n-1; i>=1; --i) Out(i), putchar(' ');
        putchar('
    ');
        for (int i=k+1; i<2*k+1; ++i) Out(i), putchar(' '), Out(i-k), putchar(' ');
        Out(2*k+1); putchar('
    ');
        return 0;
    }
    mycode
  • 相关阅读:
    vue里的样式添加之类名改动 和style改动
    vue里的样式添加之行间样式
    vue 里filter的基本用法
    Binary Tree Inorder Traversal
    Course Schedule 解答
    Topological Sorting
    Maximum Depth of Binary Tree 解答
    Clone Graph 解答
    Java Keyword -- super
    Binary Tree Zigzag Level Order Traversal 解答
  • 原文地址:https://www.cnblogs.com/lishiyao/p/7018644.html
Copyright © 2011-2022 走看看