zoukankan      html  css  js  c++  java
  • 民科吧编程赛 试题

    直播比赛现场

    题解地址

    1.选择题

    【题目要求】

    只允许使用四则运算,求出任意正数 $x$ 的自然对数 $ln (x)$

    【输入】

    一个数 $x,(0<x<10^9)$

    【输出】

    一个数 $ln (x),$保留 6 位小数。

    【时空限制】

    $t leq 1 sec;m leq 128 MiB$

     

    2.填空题

    【题目要求】

    本题允许使用四则运算和$exp$函数,给出两个数$a,b,(0<a,b<10^9)$,求$f(x)$在区间$[0,+ infty )$的最大值。其中

    $f(x)=dfrac{ax^3-bx^2}{e^{x^2- sin (x) -1}}$

    由于今天小红比较开心,所以特地帮你们把这个函数的导函数求了出来:

     

    (懒得打$LaTeX$公式了,就这么着看)

    【输入】

    两个数$a,b$

    【输出】

    一个数$f(x)_{max}$,保留6位小数。

    【时空限制】

    $t leq 1 sec;m leq 128 MiB$

    3.解答题(物理向)

    【题目要求】

    平面直角坐标系中有$n$个质点,给出各质点的坐标$(x_i,y_i)$与质量$m_i$,求它们质心的坐标$(x_{sigma},y_{sigma})$。

    本题不会编程的可手算,保留一位小数即可。

    此题允许使用四则运算和$exp$函数

    【输入】

    第一行一个数$n,(n leq 10)$,表示$n$个质点。

    第$2 ext{~}n+1$行三个数,表示各个质点的坐标$x_i,y_i$和质量$m_i$。

    【输出】

    两个数$(x_{sigma},y_{sigma})$,保留3位小数。

    【时空限制】

    $t leq 1 sec;m leq 128 MiB$

    【评分细则】

    令标准答案为$std$,你的答案为$ans$:

    得分 $score=P((std pm ans ext{~} pm infty ), x ext{~} N(std,0.01) $

    (对于手算,得分$score=P((std pm ans ext{~} pm infty ) ,x ext{~} N(std,1) $)

  • 相关阅读:
    mysql之旅【第一篇】
    初探psutil
    Android的ListView分页功能
    Android中用PULL解析XML
    HTTPClient模块的HttpGet和HttpPost
    PB11.5创建及调用WebService
    Android平台使用SQLite数据库存储数据
    高通mm-camera平台 Camera bring up基本调试思路
    在Linux中使用crontab
    Linux 修改 hostname
  • 原文地址:https://www.cnblogs.com/little-red/p/13385463.html
Copyright © 2011-2022 走看看