zoukankan      html  css  js  c++  java
  • 逆序问题及其几种解法

    (A)为一个有(n)个数字的序列,其中所有的数字各不相同。如果存在正整数(i)(j),使得(1 le i lt j le n)(A[i] gt A[j]),那么数对((A[i], A[j]))就被称为(A)的一个逆序对,也称作逆序,逆序对的数量就是逆序数。如下图所示,((A[2], A[4]))就是一个逆序对。

    LeetCode 面试题51. 数组中的逆序对

    分治法

    假设我们要统计数列(A)中逆序对的个数。如图所示,我们可以将数列(A)分成两半得到数列B和数列C。因此,数列A中所有的逆序对必属于下面三者其一:
    (1). (i,j)都属于数列(B)的逆序对
    (2). (i,j)都属于数列(C)的逆序对
    (3). (i)属于数列(B)(j)属于数列(C)的逆序对

    所以,我们只需要分别统计这三种逆序对,然后再加起来就行了。(1)和(2)可以通过递归求得,对于(3),我们可以对数列(C)中的每个数字,统计在数列(B)中比它大的数字的个数,再把结果加起来即可。因为每次分治时数列的长度都会减半,所以递归的深度是(O(log n)),而每一层有(O(n))个操作,因此算法的时间复杂度为(O(nlog n))

    class Solution {
    public:
        int reversePairs(vector<int>& nums) {
            int n = nums.size();
            if (n <= 1) return 0;
            auto mid = nums.begin() + n / 2;
            vector<int> left(nums.begin(), mid);
            vector<int> right(mid, nums.end());
            
            int cnt = 0;
            
            cnt += reversePairs(left);
            cnt += reversePairs(right);
            
            int nums_idx = 0;
            int left_idx = 0;
            int right_idx = 0;
            
            while (nums_idx < n) {
                if (left_idx < left.size() && (right_idx == right.size() || left[left_idx] <= right[right_idx])) {
                    nums[nums_idx++] = left[left_idx++];
                } else {
                    cnt += n / 2 - left_idx;
                    nums[nums_idx++] = right[right_idx++];
                }
            }
            return cnt;
        }
    };
    

    树状数组

    我们构建一个值的范围是(1sim n)的树状数组,按照(j=0,1,2,cdots,n-1)进行如下操作:

    • (j- ext{sum}(A[j]))
    • ( ext{add}(A[j], 1))

    对于每个(j),树状数组查询得到的前(A[j])项的和就是满足(i lt j, A[i] le A[j])(i)的个数。因此,把这个值从(j)中减去,得到的就是满足(i lt j, A[i] gt A[j])(i)的个数。由于对每个(j)的复杂度是(O(log n)),所以整个算法的复杂度是(O(nlog n))。注意到树状数组的范围是(1sim n),而原始序列中可能包含负数或者非常大的数,因此我们需要对原始数据进行一次映射(离散化),把原始数据映射到(1sim n)区间上。

    class Solution {
    public:
        int reversePairs(vector<int>& nums) {
            
            if (nums.size() <= 1) return 0;
            
            vector<int> nums_copy(nums.begin(), nums.end());
            sort(nums_copy.begin(), nums_copy.end());
            
            unordered_map<int, int> num_val_map;
            n = 1;
    
            // 离散化
            for_each (nums_copy.begin(), nums_copy.end(), [&num_val_map, this](const int val) {
                if (num_val_map[val] == 0) num_val_map[val] = n++;
            });
            
            bits.resize(n);
            fill(bits.begin(), bits.end(), 0);
            int ans = 0;
            for(int i = 0;i < nums.size(); ++i) {
                ans += i - sum(num_val_map[nums[i]]);
                add(num_val_map[nums[i]], 1);
            }
            return ans;
        }
    private:
        int n;
        vector<int> bits;
        
        inline int lowbit (int x) {
            return x & (-x);
        }
        
        void add (int idx, int val) {
            while (idx < n) {
                bits[idx] += val;
                idx += lowbit(idx);
            }
        }
        
        int sum (int idx) {
            int res = 0;
            while (idx > 0) {
                res += bits[idx];
                idx -= lowbit(idx);
            }
            return res;
        }
    };
    

    LeetCode 315. 计算右侧小于当前元素的个数

    class Solution {
    public:
        vector<int> countSmaller(vector<int>& nums) {
            vector<Pair> num_pairs(nums.size());
            vector<int> counts(nums.size(), 0);
            for (int i = 0;i < nums.size();++i) {
                num_pairs[i].first = nums[i];
                num_pairs[i].second = i;
            }
            reversePairs(num_pairs, counts);
            return counts;
        }
    private:
        using Pair = pair<int, int>;
        void reversePairs(vector<Pair>& nums, vector<int>& counts) {
            int n = nums.size();
            if (n <= 1) return;
            auto mid = nums.begin() + n / 2;
            vector<Pair> left(nums.begin(), mid);
            vector<Pair> right(mid, nums.end());
            
            reversePairs(left, counts);
            reversePairs(right, counts);
            
            int nums_idx = 0;
            int left_idx = 0;
            int right_idx = 0;
            
            while (nums_idx < n) {
                if (left_idx < left.size() && (right_idx == right.size() || left[left_idx].first <= right[right_idx].first)) {
                    nums[nums_idx++] = left[left_idx++];
                } else {
                    for (int i = left_idx; i < n/2; i++) {
                        counts[left[i].second] += 1;
                    };
                    nums[nums_idx++] = right[right_idx++];
                }
            }
        }
    };
    
  • 相关阅读:
    MySQL基础(一):检索数据
    Go基础(九):并发
    Go基础(八):反射
    Go基础(七):接口
    Go基础(六):方法
    Go基础(五):结构体
    Go基础(四):流程控制和函数
    Go基础(三):内置基础类型和一些技巧
    Go基础(二):变量和常量
    Go基础(一):命令行操作
  • 原文地址:https://www.cnblogs.com/littleorange/p/12634875.html
Copyright © 2011-2022 走看看