zoukankan      html  css  js  c++  java
  • SQL的基本操作(三)

    Hive基本SQL操作

    Hive DDL(数据库定义语言)

    1、数据库的基本操作

    --展示所有数据库
    	show databases;
    --切换数据库
    	use database_name;
    /*创建数据库		
    	CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name
    	  [COMMENT database_comment]
    	  [LOCATION hdfs_path]
    	  [WITH DBPROPERTIES (property_name=property_value, ...)];
    */
    	create database test;
    /*
    	删除数据库	
    	DROP (DATABASE|SCHEMA) [IF EXISTS] database_name [RESTRICT|CASCADE];	
    */
    	drop database database_name;
    

    注意:当进入hive的命令行开始编写SQL语句的时候,如果没有任何相关的数据库操作,那么默认情况下,所有的表存在于default数据库,在hdfs上的展示形式是将此数据库的表保存在hive的默认路径下,如果创建了数据库,那么会在hive的默认路径下生成一个database_name.db的文件夹,此数据库的所有表会保存在database_name.db的目录下。

    2、数据库表的基本操作

    /*
    	创建表的操作
    		基本语法:
    		CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name    -- 			(Note: TEMPORARY available in Hive 0.14.0 and later)
      		[(col_name data_type [COMMENT col_comment], ... [constraint_specification])]
      		[COMMENT table_comment]
      		[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
      		[CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] 				INTO num_buckets BUCKETS]
      		[SKEWED BY (col_name, col_name, ...)                  -- (Note: Available in Hive 			0.10.0 and later)]
         	ON ((col_value, col_value, ...), (col_value, col_value, ...), ...)
         	[STORED AS DIRECTORIES]
      		[
       			[ROW FORMAT row_format] 
       			[STORED AS file_format]
         		| STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)]  -- 				(Note: Available in Hive 0.6.0 and later)
      		]
      		[LOCATION hdfs_path]
      		[TBLPROPERTIES (property_name=property_value, ...)]   -- (Note: Available in Hive 			0.6.0 and later)
      		[AS select_statement];   -- (Note: Available in Hive 0.5.0 and later; not 					supported for external tables)
     
    		CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
      			LIKE existing_table_or_view_name
      		[LOCATION hdfs_path];
     		复杂数据类型
    		data_type
      		 : primitive_type
      		 | array_type
      		 | map_type
      		 | struct_type
      		 | union_type  -- (Note: Available in Hive 0.7.0 and later)
     		基本数据类型
    		primitive_type
     		 : TINYINT
     		 | SMALLINT
     		 | INT
     		 | BIGINT
     		 | BOOLEAN
     		 | FLOAT
     		 | DOUBLE
      		 | DOUBLE PRECISION -- (Note: Available in Hive 2.2.0 and later)
     		 | STRING
     		 | BINARY      -- (Note: Available in Hive 0.8.0 and later)
     		 | TIMESTAMP   -- (Note: Available in Hive 0.8.0 and later)
     		 | DECIMAL     -- (Note: Available in Hive 0.11.0 and later)
     		 | DECIMAL(precision, scale)  -- (Note: Available in Hive 0.13.0 and later)
     		 | DATE        -- (Note: Available in Hive 0.12.0 and later)
     		 | VARCHAR     -- (Note: Available in Hive 0.12.0 and later)
     		 | CHAR        -- (Note: Available in Hive 0.13.0 and later)
     
    		array_type
     		 : ARRAY < data_type >
     
    		map_type
     		 : MAP < primitive_type, data_type >
     
    		struct_type
     		 : STRUCT < col_name : data_type [COMMENT col_comment], ...>
     
    		union_type
      		 : UNIONTYPE < data_type, data_type, ... >  -- (Note: Available in Hive 0.7.0 and 			later)
     		行格式规范
    		row_format
     		 : DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS 				TERMINATED BY char]
     	       [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
    	       [NULL DEFINED AS char]   -- (Note: Available in Hive 0.13 and later)
      			| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, 				property_name=property_value, ...)]
     		文件基本类型
    		file_format:
     		 : SEQUENCEFILE
     		 | TEXTFILE    -- (Default, depending on hive.default.fileformat configuration)
     		 | RCFILE      -- (Note: Available in Hive 0.6.0 and later)
     		 | ORC         -- (Note: Available in Hive 0.11.0 and later)
     		 | PARQUET     -- (Note: Available in Hive 0.13.0 and later)
     		 | AVRO        -- (Note: Available in Hive 0.14.0 and later)
     		 | JSONFILE    -- (Note: Available in Hive 4.0.0 and later)
     		 | INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname
     		表约束
    		constraint_specification:
     		 : [, PRIMARY KEY (col_name, ...) DISABLE NOVALIDATE ]
     		   [, CONSTRAINT constraint_name FOREIGN KEY (col_name, ...) REFERENCES 					table_name(col_name, ...) DISABLE NOVALIDATE 
    */
    
    --创建普通hive表(不包含行定义格式)
    	create table psn
    	(
    	id int,
    	name string,
    	likes array<string>,
    	address map<string,string>
    	)
    --创建自定义行格式的hive表
    	create table psn2
    	(
    	id int,
    	name string,
    	likes array<string>,
    	address map<string,string>
    	)
    	row format delimited
    	fields terminated by ','
    	collection items terminated by '-'
    	map keys terminated by ':';
    --创建默认分隔符的hive表(^A、^B、^C)
    	create table psn3
    	(
    	id int,
    	name string,
    	likes array<string>,
    	address map<string,string>
    	)
    	row format delimited
    	fields terminated by '01'
    	collection items terminated by '02'
    	map keys terminated by '03';
    	--或者
    	create table psn3
    	(
    	id int,
    	name string,
    	likes array<string>,
    	address map<string,string>
    	)
    --创建hive的外部表(需要添加external和location的关键字)
    	create external table psn4
    	(
    	id int,
    	name string,
    	likes array<string>,
    	address map<string,string>
    	)
    	row format delimited
    	fields terminated by ','
    	collection items terminated by '-'
    	map keys terminated by ':'
    	location '/data';
    /*
    	在之前创建的表都属于hive的内部表(psn,psn2,psn3),而psn4属于hive的外部表,
    	内部表跟外部表的区别:
    		1、hive内部表创建的时候数据存储在hive的默认存储目录中,外部表在创建的时候需要制定额外的目录
    		2、hive内部表删除的时候,会将元数据和数据都删除,而外部表只会删除元数据,不会删除数据
    	应用场景:
    		内部表:需要先创建表,然后向表中添加数据,适合做中间表的存储
    		外部表:可以先创建表,再添加数据,也可以先有数据,再创建表,本质上是将hdfs的某一个目录的数据跟				hive的表关联映射起来,因此适合原始数据的存储,不会因为误操作将数据给删除掉
    */	
    /*
    	hive的分区表:
    		hive默认将表的数据保存在某一个hdfs的存储目录下,当需要检索符合条件的某一部分数据的时候,需要全量		遍历数据,io量比较大,效率比较低,因此可以采用分而治之的思想,将符合某些条件的数据放置在某一个目录		 ,此时检索的时候只需要搜索指定目录即可,不需要全量遍历数据。
    */
    --创建单分区表
    	create table psn5
    	(
    	id int,
    	name string,
    	likes array<string>,
    	address map<string,string>
    	)
    	partitioned by(gender string)
    	row format delimited
    	fields terminated by ','
    	collection items terminated by '-'
    	map keys terminated by ':';
    --创建多分区表
    	create table psn6
    	(
    	id int,
    	name string,
    	likes array<string>,
    	address map<string,string>
    	)
    	partitioned by(gender string,age int)
    	row format delimited
    	fields terminated by ','
    	collection items terminated by '-'
    	map keys terminated by ':';	
    /*
    	注意:
    		1、当创建完分区表之后,在保存数据的时候,会在hdfs目录中看到分区列会成为一个目录,以多级目录的形式			  存在
    		2、当创建多分区表之后,插入数据的时候不可以只添加一个分区列,需要将所有的分区列都添加值
    		3、多分区表在添加分区列的值得时候,与顺序无关,与分区表的分区列的名称相关,按照名称就行匹配
    */	
    --给分区表添加分区列的值
    	alter table table_name add partition(col_name=col_value)
    --删除分区列的值
    	alter table table_name drop partition(col_name=col_value)
    /*
    	注意:
    		1、添加分区列的值的时候,如果定义的是多分区表,那么必须给所有的分区列都赋值
    		2、删除分区列的值的时候,无论是单分区表还是多分区表,都可以将指定的分区进行删除
    */
    /*
    	修复分区:
    		在使用hive外部表的时候,可以先将数据上传到hdfs的某一个目录中,然后再创建外部表建立映射关系,如果在上传数据的时候,参考分区表的形式也创建了多级目录,那么此时创建完表之后,是查询不到数据的,原因是分区的元数据没有保存在mysql中,因此需要修复分区,将元数据同步更新到mysql中,此时才可以查询到元数据。具体操作如下:
    */	
    --在hdfs创建目录并上传文件
    	hdfs dfs -mkdir /msb
    	hdfs dfs -mkdir /msb/age=10
    	hdfs dfs -mkdir /msb/age=20
    	hdfs dfs -put /root/data/data /msb/age=10
    	hdfs dfs -put /root/data/data /msb/age=20
    --创建外部表
    	create external table psn7
    	(
    	id int,
    	name string,
    	likes array<string>,
    	address map<string,string>
    	)
    	partitioned by(age int)
    	row format delimited
    	fields terminated by ','
    	collection items terminated by '-'
    	map keys terminated by ':'
    	location '/msb';
    --查询结果(没有数据)
    	select * from psn7;
    --修复分区
    	msck repair table psn7;
    --查询结果(有数据)
    	select * from psn7;
    /*
    	问题:
    		以上面的方式创建hive的分区表会存在问题,每次插入的数据都是人为指定分区列的值,我们更加希望能够根		  据记录中的某一个字段来判断将数据插入到哪一个分区目录下,此时利用我们上面的分区方式是无法完成操作			的,需要使用动态分区来完成相关操作,现在学的知识点无法满足,后续讲解。
    */
    
    
    

    Hive DML

    1、插入数据

    1、Loading files into tables
    /*
    	记载数据文件到某一张表中
    	语法:
    		LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION 		(partcol1=val1, partcol2=val2 ...)]
     
    		LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION 		(partcol1=val1, partcol2=val2 ...)] [INPUTFORMAT 'inputformat' SERDE 'serde'] 			(3.0 or later)
    */
    --加载本地数据到hive表
    	load data local inpath '/root/data/data' into table psn;--(/root/data/data指的是本地		linux目录)
    --加载hdfs数据文件到hive表
    	load data inpath '/data/data' into table psn;--(/data/data指的是hdfs的目录)
    /*
    	注意:
    		1、load操作不会对数据做任何的转换修改操作
    		2、从本地linux load数据文件是复制文件的过程
    		3、从hdfs load数据文件是移动文件的过程
    		4、load操作也支持向分区表中load数据,只不过需要添加分区列的值
    */
    
    2、Inserting data into Hive Tables from queries
    /*
    	从查询语句中获取数据插入某张表
    	语法:
    		Standard syntax:
    		INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) 			[IF NOT EXISTS]] select_statement1 FROM from_statement;
    		INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] 				select_statement1 FROM from_statement;
     
    		Hive extension (multiple inserts):
    		FROM from_statement
    		INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) 			[IF NOT EXISTS]] select_statement1
    		[INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] 							select_statement2]
    		[INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2] ...;
    			FROM from_statement
    		INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] 				select_statement1
    		[INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2]
    		[INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] 							select_statement2] ...;
     
    		Hive extension (dynamic partition inserts):
    			INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] 				...) select_statement FROM from_statement;
    			INSERT INTO TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) 				select_statement FROM from_statement;
    */
    --注意:这种方式插入数据的时候需要预先创建好结果表
    --从表中查询数据插入结果表
    	INSERT OVERWRITE TABLE psn9 SELECT id,name FROM psn
    --从表中获取部分列插入到新表中
    	from psn
    	insert overwrite table psn9
    	select id,name 
    	insert into table psn10
    	select id
    
    3、Writing data into the filesystem from queries
    /*
    	将查询到的结果插入到文件系统中
    	语法:	
    	Standard syntax:
    		INSERT OVERWRITE [LOCAL] DIRECTORY directory1
      		[ROW FORMAT row_format] [STORED AS file_format] (Note: Only available starting 			with Hive 0.11.0)
      		SELECT ... FROM ...
     
    	Hive extension (multiple inserts):
    		FROM from_statement
    		INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1
    		[INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2] ... 
    		row_format
      		: DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS 			TERMINATED BY char]
            [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
            [NULL DEFINED AS char] (Note: Only available starting with Hive 0.13)
    */
    --注意:路径千万不要填写根目录,会把所有的数据文件都覆盖
    --将查询到的结果导入到hdfs文件系统中
    	insert overwrite directory '/result' select * from psn;
    --将查询的结果导入到本地文件系统中
    	insert overwrite local directory '/result' select * from psn;
    
    4、Inserting values into tables from SQL
    /*
    	使用传统关系型数据库的方式插入数据,效率较低
    	语法:
    	Standard Syntax:
    		INSERT INTO TABLE tablename [PARTITION (partcol1[=val1], partcol2[=val2] ...)] 			VALUES values_row [, values_row ...]
      
    	Where values_row is:
    		( value [, value ...] )
    		where a value is either null or any valid SQL literal
    */
    --插入数据
    	insert into psn values(1,'zhangsan')
    

    2、数据更新和删除

    delete

    update

    ​ 在官网中我们明确看到hive中是支持Update和Delete操作的,但是实际上,是需要事务的支持的,Hive对于事务的支持有很多的限制,如下图所示:

    transaction_limitations

    因此,在使用hive的过程中,我们一般不会产生删除和更新的操作,如果你需要测试的话,参考下面如下配置:

    //在hive的hive-site.xml中添加如下配置:
    	<property>
    		<name>hive.support.concurrency</name>
    		<value>true</value>
    	</property>
    	<property>
    		<name>hive.enforce.bucketing</name>
    		<value>true</value>
    	</property>
    	<property>
    		<name>hive.exec.dynamic.partition.mode</name>
    		<value>nonstrict</value>
    	</property>
    	<property>
    		<name>hive.txn.manager</name>
    		<value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>
    	</property>
    	<property>
    		<name>hive.compactor.initiator.on</name>
    		<value>true</value>
    	</property>
    	<property>
    		<name>hive.compactor.worker.threads</name>
    		<value>1</value>
    	</property>
    //操作语句
    	create table test_trancaction (user_id Int,name String) clustered by (user_id) into 3 			buckets stored as orc TBLPROPERTIES ('transactional'='true');
    	create table test_insert_test(id int,name string) row format delimited fields 				  TERMINATED BY ',';
    	insert into test_trancaction select * from test_insert_test;
    	update test_trancaction set name='jerrick_up' where id=1;
    //数据文件
    	1,jerrick
    	2,tom
    	3,jerry
    	4,lily
    	5,hanmei
    	6,limlei
    	7,lucky
    
  • 相关阅读:
    zookeeper分布式锁
    zookeeper集群,每个服务器上的数据是相同的,每一个服务器均可以对外提供读和写的服务,这点和redis是相同的,即对客户端来讲每个服务器都是平等的。
    理解分布式系统
    zookeeper
    Codeforces Round #261 (Div. 2)[ABCDE]
    L脚本语言语法手冊 0.10版
    [Lua]mac 上安装lua
    extjs 按条件查询出的数据在grid上不显示
    木桶效应
    Shuttle ESB(四)——公布订阅模式实例介绍(1)
  • 原文地址:https://www.cnblogs.com/littlepage/p/11337544.html
Copyright © 2011-2022 走看看