zoukankan      html  css  js  c++  java
  • UFLDL之自我学习

    UFLDL之自我学习

    参考资料:UFLDL教程tornadomeet的博客
    个人代码:github地址

    自我学习算法介绍

    假设我们有大量数据集(其中既有已标注的,也有未标注的),那么,想要得到标注,通常是只使用已标注的数据得到模型。
    但是这样对数据集的信息利用是不充分的(没有利用到未标注数据)。根据UFLDL的稀疏自编码算法部分,稀疏自编码这种无监督学习算法可以提取所有数据间隐含的联系和特征。因此可以考虑,先利用稀疏自编码算法提取所有数据的隐含特征,再计算已标注数据的特征,利用其特征和标签来训练模式。
    稀疏自编码算法的结构如下:
    这里写图片描述
    去掉最后一层,转而利用中间特征层的输出作为训练模型时输入:
    这里写图片描述
    此时训练集由原来的({(x^{(1)},y^{(1)}), (x^{(2)},y^{(2)})ldots (x^{(m)},y^{(m)})})改变为({(a^{(1)},y^{(1)}), (a^{(2)},y^{(2)})ldots (a^{(m)},y^{(m)})}),若使用级联表示,则可表示为({((x^{(1)},a^{(1)}),y^{(1)}), ((x^{(2)},a^{(2)}),y^{(2)})ldots ((x^{(m)},a^{(m)}),y^{(m)})})

  • 相关阅读:
    vnode之update 还是没太懂
    vnodec创建之标签
    1054 求平均值
    1053 住房空置率
    1052 卖个萌
    1051 复数乘法
    1050 螺旋矩阵
    1049 数列的片段和
    1048 数字加密
    1047 编程团体赛
  • 原文地址:https://www.cnblogs.com/lity/p/6039021.html
Copyright © 2011-2022 走看看