题目描述
如题,一开始有 n 个小根堆,每个堆包含且仅包含一个数。接下来需要支持两种操作:
1 x y:将第 x 个数和第 y 个数所在的小根堆合并(若第 x 或第 y 个数已经被删除或第 x 和第 y 个数在用一个堆内,则无视此操作)。
2 x:输出第 x 个数所在的堆最小数,并将这个最小数删除(若有多个最小数,优先删除先输入的;若第 x 个数已经被删除,则输出 −1 并无视删除操作)。
输入格式
第一行包含两个正整数 n,m,分别表示一开始小根堆的个数和接下来操作的个数。
第二行包含 n个正整数,其中第 i 个正整数表示第 i 个小根堆初始时包含且仅包含的数。
接下来 m 行每行 2 个或 3 个正整数,表示一条操作,格式如下:
操作 1:1 x y
操作 2:2 x
输出格式
输出包含若干行整数,分别依次对应每一个操作 2 所得的结果。
输入输出样例
输入 #1
5 5
1 5 4 2 3
1 1 5
1 2 5
2 2
1 4 2
2 2
输出 #1
1
2
说明/提示
【数据规模】
对于 30% 的数据:n≤10,m≤10。
对于 70% 的数据:n≤10,(mle 10^3)。
对于 100% 的数据:(nle 10^5),(mle 10^5),初始时小根堆中的所有数都在 int 范围内。
【样例解释】
初始状态下,五个小根堆分别为:{1}、{5}、{4}、{2}、{3}。
第一次操作,将第 1 个数所在的小根堆与第 5 个数所在的小根堆合并,故变为四个小根堆:{1,3}、{5}、{4}、{2}。
第二次操作,将第 2 个数所在的小根堆与第 5 个数所在的小根堆合并,故变为三个小根堆:{1,3,5}、{4}、{2}。
第三次操作,将第 2 个数所在的小根堆的最小值输出并删除,故输出 1,第一个数被删除,三个小根堆为:{3,5}、{4}、{2}。
第四次操作,将第 4 个数所在的小根堆与第 2 个数所在的小根堆合并,故变为两个小根堆:{2,3,5}、{4}。
第五次操作,将第 2 个数所在的小根堆的最小值输出并删除,故输出 222,第四个数被删除,两个小根堆为:{3,5}、{4}。
故输出依次为 1、2。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
struct trr{
int dis,val,ls,rs,rt;
}tr[maxn];
/*
dis:记录这个节点到它子树里面最近的叶子节点的距离,叶子节点距离为0
val:节点的权值
ls:左儿子
rs:右儿子
rt:根节点编号
*/
int bing(int xx,int yy){
if(!xx || !yy) return xx+yy;
//叶子节点直接返回
if(tr[xx].val>tr[yy].val ||(tr[xx].val==tr[yy].val && xx>yy)){
swap(xx,yy);
}//维护小根堆的性质
tr[xx].rs=bing(tr[xx].rs,yy);//将xx的右儿子和yy合并
if(tr[tr[xx].ls].dis<tr[tr[xx].rs].dis) swap(tr[xx].ls,tr[xx].rs);//维护左偏性质
tr[tr[xx].ls].rt=tr[tr[xx].rs].rt=tr[xx].rt=xx;//维护根节点
tr[xx].dis=tr[tr[xx].rs].dis+1;//一个节点的距离始终等于右儿子+1
return xx;
}
int get(int xx){
if(tr[xx].rt==xx) return xx;
return tr[xx].rt=get(tr[xx].rt);
}//路径压缩查找根节点
void sc(int xx){
tr[xx].val=-1;
tr[tr[xx].ls].rt=tr[xx].ls;
tr[tr[xx].rs].rt=tr[xx].rs;
tr[xx].rt=bing(tr[xx].ls,tr[xx].rs);
}//删除某个节点
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
tr[i].rt=i;
scanf("%d",&tr[i].val);
}
for(int i=1;i<=m;i++){
int aa;
scanf("%d",&aa);
if(aa==1){
int bb,cc;
scanf("%d%d",&bb,&cc);
if(tr[bb].val==-1 || tr[cc].val==-1) continue;
int xx=get(bb),yy=get(cc);
if(xx!=yy) tr[xx].rt=tr[yy].rt=bing(xx,yy);
} else {
int bb;
scanf("%d",&bb);
if(tr[bb].val==-1) printf("-1
");
else {
printf("%d
",tr[get(bb)].val);
sc(get(bb));
}
}
}
return 0;
}