zoukankan      html  css  js  c++  java
  • spark-submit参数说明--on YARN

    示例: spark-submit [--option value] <application jar> [application arguments]

    参数名称

    含义

    --master MASTER_URL

    yarn

    --deploy-mode DEPLOY_MODE

    Driver程序运行的地方:client、cluster

    --class CLASS_NAME

    The FQCN of the class containing the main method of the application.

    For example, org.apache.spark.examples.SparkPi.

    应用程序主类名称,含包名

    --name NAME

    应用程序名称

    --jars JARS

    Driver和Executor依赖的第三方jar包

    --properties-file FILE

    应用程序属性的文件路径,默认是conf/spark-defaults.conf

     

    以下设置Driver

    --driver-cores NUM 

    Driver程序使用的CPU核数(只用于cluster),默认为1  

    --driver-memory MEM

    Driver程序使用内存大小

    --driver-library-path

    Driver程序的库路径

    --driver-class-path

    Driver程序的类路径

    --driver-java-options

     

     

    以下设置Executor

     --num-executors NUM

    The total number of YARN containers to allocate for this application.

    Alternatively, you can use the spark.executor.instances configuration parameter.

    启动的executor的数量,默认为2

    --executor-cores NUM

    Number of processor cores to allocate on each executor

    每个executor使用的CPU核数,默认为1

    --executor-memory MEM

    The maximum heap size to allocate to each executor.

    Alternatively, you can use the spark.executor.memory configuration parameter.

    每个executor内存大小,默认为1G

    --queue QUEUE_NAME

    The YARN queue to submit to.

     

    提交应用程序给哪个YARN的队列,默认是default队列

    --archives ARCHIVES

     

    --files FILES

    用逗号隔开的要放置在每个executor工作目录的文件列表

     

    1.部署模式概述

       In YARN, each application instance has an ApplicationMaster process, which is the first container started for that application.
      The application is responsible for requesting resources from the ResourceManager, and, when allocated them, instructing NodeManagers to start containers on its behalf.
      ApplicationMasters obviate the need for an active client — the process starting the application can terminate and coordination continues from a process managed by YARN running on the cluster.

    2.部署模式:Cluster

     In cluster mode, the driver runs in the ApplicationMaster on a cluster host chosen by YARN.

     This means that the same process, which runs in a YARN container, is responsible for both driving the application and requesting resources from YARN.

     The client that launches the application doesn't need to continue running for the entire lifetime of the application.

      Cluster mode is not well suited to using Spark interactively.

      Spark applications that require user input, such as spark-shell and pyspark, need the Spark driver to run inside the client process that initiates the Spark application.

    3.部署模式:Client

      In client mode, the driver runs on the host where the job is submitted.

      The ApplicationMaster is merely present to request executor containers from YARN.

      The client communicates with those containers to schedule work after they start:

    4.参考文档:

    https://www.cloudera.com/documentation/enterprise/5-4-x/topics/cdh_ig_running_spark_on_yarn.html

    http://spark.apache.org/docs/1.3.0/running-on-yarn.html

  • 相关阅读:
    [转]myeclipse 生成JAR包并引入第三方包
    Composer 基本指令操作使用
    Laravel Eloquent ORM
    [转]Spring Boot——2分钟构建spring web mvc REST风格HelloWorld
    C# IoC 容器
    【转载】laravel的MVC
    [转]Laravel 4之Eloquent ORM
    [转]Laravel 4之数据库操作
    svn unable to connect to a repository at url 执行上下文错误 不能访问SVN服务器问题
    Make a travel blog by Blogabond the theme of wordpress
  • 原文地址:https://www.cnblogs.com/liugh/p/6953010.html
Copyright © 2011-2022 走看看