zoukankan      html  css  js  c++  java
  • openpose-opencv更改K分匹配算法实现

    推理代码:demo_image_openpose.py

    import onnxruntime as ort
    import cv2
    import numpy as np
    import cv2
    import time
    
    from processing_openpose import extract_parts, draw
    
    output = 'result_onnx.jpg'
    
    protoFile = "E:\usb_test\example\yolov3\OpenPose-Multi-Person\pose\coco\pose_deploy_linevec.prototxt"
    weightsFile = "E:\usb_test\example\yolov3\OpenPose-Multi-Person\pose\coco\pose_iter_440000.caffemodel"
    model= cv2.dnn.readNetFromCaffe(protoFile, weightsFile)
    input_image = cv2.imread("E:\python_project\openpose_test\640_360.jpg")
    while True:
        tic = time.time()
    
        body_parts, all_peaks, subset, candidate = extract_parts(input_image, model)
        canvas = draw(input_image, all_peaks, subset, candidate)
        toc = time.time()
        print('processing time is %.5f' % (toc - tic))
        #
        cv2.imwrite(output, canvas)
    #
    cv2.destroyAllWindows()
    processing_openpose.py 如下:
    import math
    
    import numpy as np
    from scipy.ndimage.filters import gaussian_filter
    import cv2
    
    import util
    import time
    
    COCO_BODY_PARTS = ['nose', 'neck',
                       'right_shoulder', ' right_elbow', 'right_wrist',
                       'left_shoulder', 'left_elbow', 'left_wrist',
                       'right_hip', 'right_knee', 'right_ankle',
                       'left_hip', 'left_knee', 'left_ankle',
                       'right_eye', 'left_eye', 'right_ear', 'left_ear', 'background'
                       ]
    
    def extract_parts(input_image,model):
        start_time = time.time()
        # Body parts location heatmap, one per part (19)
        heatmap_avg = np.zeros((input_image.shape[0], input_image.shape[1], 19))
        paf_avg = np.zeros((input_image.shape[0], input_image.shape[1], 38))
        #scale = 1.5333333333333334  #552 984
        scale = 1.0222222222222221  #368 656
        image_to_test = cv2.resize(input_image, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
        print(image_to_test.shape,"11111111111")
        image_to_test_padded, pad = util.pad_right_down_corner(image_to_test, 8,
                                                               128)
    
        frameWidth = image_to_test.shape[1]
        frameHeight = image_to_test.shape[0]
        inHeight = 368
        inWidth = int((inHeight / frameHeight) * frameWidth)
        inpBlob = cv2.dnn.blobFromImage(image_to_test, 1.0 / 255, (inWidth, inHeight), (0, 0, 0), swapRB=False, crop=False)
    
        # required shape (1, width, height, channels)
        #input_img = np.transpose(np.float32(image_to_test_padded[:, :, :, np.newaxis]), (3, 0, 1, 2))
        print(image_to_test_padded.shape)
        model.setInput(inpBlob )
        output_blobs = model.forward()
        print(output_blobs.shape)
        output_blobs = output_blobs.transpose([0, 2, 3, 1])
        heatmap = output_blobs[0, :, :, 0:19]
        paf =  output_blobs[0, :, :, 19:]
        print("inference time is ",time.time() - start_time)
        print(heatmap.shape)
        print(paf.shape)
    
        heatmap = cv2.resize(heatmap, (0, 0), fx=8, fy=8,
                             interpolation=cv2.INTER_CUBIC)
        heatmap = heatmap[:image_to_test_padded.shape[0] - pad[2], :image_to_test_padded.shape[1] - pad[3], :]
        heatmap = cv2.resize(heatmap, (input_image.shape[1], input_image.shape[0]), interpolation=cv2.INTER_CUBIC)
    
        #paf = np.squeeze(output_blobs[0])  # output 0 is PAFs
        paf = cv2.resize(paf, (0, 0), fx=8, fy=8,
                         interpolation=cv2.INTER_CUBIC)
        paf = paf[:image_to_test_padded.shape[0] - pad[2], :image_to_test_padded.shape[1] - pad[3], :]
        paf = cv2.resize(paf, (input_image.shape[1], input_image.shape[0]), interpolation=cv2.INTER_CUBIC)
        heatmap_avg = heatmap
        paf_avg = paf
    
        all_peaks = []
        peak_counter = 0
        time1 = time.time()
        for part in range(18):
            hmap_ori = heatmap_avg[:, :, part]
            hmap = gaussian_filter(hmap_ori, sigma=3)
    
            # Find the pixel that has maximum value compared to those around it
            hmap_left = np.zeros(hmap.shape)
            hmap_left[1:, :] = hmap[:-1, :]
            hmap_right = np.zeros(hmap.shape)
            hmap_right[:-1, :] = hmap[1:, :]
            hmap_up = np.zeros(hmap.shape)
            hmap_up[:, 1:] = hmap[:, :-1]
            hmap_down = np.zeros(hmap.shape)
            hmap_down[:, :-1] = hmap[:, 1:]
    
            # reduce needed because there are > 2 arguments
            peaks_binary = np.logical_and.reduce(
                (hmap >= hmap_left, hmap >= hmap_right, hmap >= hmap_up, hmap >= hmap_down, hmap > 0.1))
            peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]))  # note reverse
            peaks_with_score = [x + (hmap_ori[x[1], x[0]],) for x in peaks]  # add a third element to tuple with score
            idx = range(peak_counter, peak_counter + len(peaks))
            peaks_with_score_and_id = [peaks_with_score[i] + (idx[i],) for i in range(len(idx))]
    
            all_peaks.append(peaks_with_score_and_id)
            peak_counter += len(peaks)
    
        connection_all = []
        special_k = []
        mid_num = 10
        print("18time",time.time()-time1)
        time2 = time.time()
        for k in range(len(util.hmapIdx)):
            score_mid = paf_avg[:, :, [x - 19 for x in util.hmapIdx[k]]]
            cand_a = all_peaks[util.limbSeq[k][0] - 1]
            cand_b = all_peaks[util.limbSeq[k][1] - 1]
            n_a = len(cand_a)
            n_b = len(cand_b)
            # index_a, index_b = util.limbSeq[k]
            if n_a != 0 and n_b != 0:
                connection_candidate = []
                for i in range(n_a):
                    for j in range(n_b):
                        vec = np.subtract(cand_b[j][:2], cand_a[i][:2])
                        norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
                        # failure case when 2 body parts overlaps
                        if norm == 0:
                            continue
                        vec = np.divide(vec, norm)
    
                        startend = list(zip(np.linspace(cand_a[i][0], cand_b[j][0], num=mid_num),
                                            np.linspace(cand_a[i][1], cand_b[j][1], num=mid_num)))
    
                        vec_x = np.array(
                            [score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0]
                             for I in range(len(startend))])
                        vec_y = np.array(
                            [score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1]
                             for I in range(len(startend))])
    
                        score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
                        score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
                            0.5 * input_image.shape[0] / norm - 1, 0)
                        criterion1 = len(np.nonzero(score_midpts > 0.05)[0]) > 0.8 * len(
                            score_midpts)
                        criterion2 = score_with_dist_prior > 0
                        if criterion1 and criterion2:
                            connection_candidate.append([i, j, score_with_dist_prior,
                                                         score_with_dist_prior + cand_a[i][2] + cand_b[j][2]])
    
                connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
                connection = np.zeros((0, 5))
                for c in range(len(connection_candidate)):
                    i, j, s = connection_candidate[c][0:3]
                    if i not in connection[:, 3] and j not in connection[:, 4]:
                        connection = np.vstack([connection, [cand_a[i][3], cand_b[j][3], s, i, j]])
                        if len(connection) >= min(n_a, n_b):
                            break
    
                connection_all.append(connection)
            else:
                special_k.append(k)
                connection_all.append([])
        print("hatmap",time.time()-time2)
        # last number in each row is the total parts number of that person
        # the second last number in each row is the score of the overall configuration
        subset = np.empty((0, 20))
        candidate = np.array([item for sublist in all_peaks for item in sublist])
        time3 = time.time()
        for k in range(len(util.hmapIdx)):
            if k not in special_k:
                part_as = connection_all[k][:, 0]
                part_bs = connection_all[k][:, 1]
                index_a, index_b = np.array(util.limbSeq[k]) - 1
    
                for i in range(len(connection_all[k])):  # = 1:size(temp,1)
                    found = 0
                    subset_idx = [-1, -1]
                    for j in range(len(subset)):  # 1:size(subset,1):
                        if subset[j][index_a] == part_as[i] or subset[j][index_b] == part_bs[i]:
                            subset_idx[found] = j
                            found += 1
    
                    if found == 1:
                        j = subset_idx[0]
                        if subset[j][index_b] != part_bs[i]:
                            subset[j][index_b] = part_bs[i]
                            subset[j][-1] += 1
                            subset[j][-2] += candidate[part_bs[i].astype(int), 2] + connection_all[k][i][2]
                    elif found == 2:  # if found 2 and disjoint, merge them
                        j1, j2 = subset_idx
                        membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
                        if len(np.nonzero(membership == 2)[0]) == 0:  # merge
                            subset[j1][:-2] += (subset[j2][:-2] + 1)
                            subset[j1][-2:] += subset[j2][-2:]
                            subset[j1][-2] += connection_all[k][i][2]
                            subset = np.delete(subset, j2, 0)
                        else:  # as like found == 1
                            subset[j1][index_b] = part_bs[i]
                            subset[j1][-1] += 1
                            subset[j1][-2] += candidate[part_bs[i].astype(int), 2] + connection_all[k][i][2]
    
                    # if find no partA in the subset, create a new subset
                    elif not found and k < 17:
                        row = -1 * np.ones(20)
                        row[index_a] = part_as[i]
                        row[index_b] = part_bs[i]
                        row[-1] = 2
                        row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
                        subset = np.vstack([subset, row])
        print("len(hatmap)",time.time() - time3)
        # delete some rows of subset which has few parts occur
        delete_idx = []
        for i in range(len(subset)):
            if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
                delete_idx.append(i)
        subset = np.delete(subset, delete_idx, axis=0)
        points = []
        for peak in all_peaks:
            try:
                points.append((peak[0][:2]))
            except IndexError:
                points.append((None, None))
        body_parts = dict(zip(COCO_BODY_PARTS, points))
        return body_parts, all_peaks, subset, candidate
    
    
    def draw(input_image, all_peaks, subset, candidate, resize_fac=1):
        canvas = input_image.copy()
    
        for i in range(18):
            for j in range(len(all_peaks[i])):
                a = all_peaks[i][j][0] * resize_fac
                b = all_peaks[i][j][1] * resize_fac
                cv2.circle(canvas, (a, b), 2, util.colors[i], thickness=-1)
    
        stickwidth = 1
    
        for i in range(17):
            for s in subset:
                index = s[np.array(util.limbSeq[i]) - 1]
                if -1 in index:
                    continue
                cur_canvas = canvas.copy()
                y = candidate[index.astype(int), 0]
                x = candidate[index.astype(int), 1]
                m_x = np.mean(x)
                m_y = np.mean(y)
                length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
                angle = math.degrees(math.atan2(x[0] - x[1], y[0] - y[1]))
                polygon = cv2.ellipse2Poly((int(m_y * resize_fac), int(m_x * resize_fac)),
                                           (int(length * resize_fac / 2), stickwidth), int(angle), 0, 360, 1)
                cv2.fillConvexPoly(cur_canvas, polygon, util.colors[i])
                canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
    
        return canvas

    util.py代码如下

    import numpy as np
    from io import StringIO
    import PIL.Image
    from IPython.display import Image, display
    
    # find connection in the specified sequence, center 29 is in the position 15
    limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10],
               [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17],
               [1, 16], [16, 18], [3, 17], [6, 18]]
    #
    # # the middle joints heatmap correpondence
    hmapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22],
               [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52],
               [55, 56], [37, 38], [45, 46]]
    
    # limbSeq = [[1,2], [1,5], [2,3], [3,4], [5,6], [6,7],
    #               [1,8], [8,9], [9,10], [1,11], [11,12], [12,13],
    #               [1,0], [0,14], [14,16], [0,15], [15,17],
    #               [2,17], [5,16] ]
    
    
    
    
    # visualize
    colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0],
              [0, 255, 0],
              [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255],
              [85, 0, 255],
              [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
    
    
    def show_bgr_image(a, fmt='jpeg'):
        a = np.uint8(np.clip(a, 0, 255))
        a[:, :, [0, 2]] = a[:, :, [2, 0]]  # for B,G,R order
        f = StringIO()
        PIL.Image.fromarray(a).save(f, fmt)
        display(Image(data=f.getvalue()))
    
    
    def showmap(a, fmt='png'):
        a = np.uint8(np.clip(a, 0, 255))
        f = StringIO()
        PIL.Image.fromarray(a).save(f, fmt)
        display(Image(data=f.getvalue()))
    
    
    # def checkparam(param):
    #    octave = param['octave']
    #    starting_range = param['starting_range']
    #    ending_range = param['ending_range']
    #    assert starting_range <= ending_range, 'starting ratio should <= ending ratio'
    #    assert octave >= 1, 'octave should >= 1'
    #    return starting_range, ending_range, octave
    
    
    def get_jet_color(v, vmin, vmax):
        c = np.zeros(3)
        if v < vmin:
            v = vmin
        if v > vmax:
            v = vmax
        dv = vmax - vmin
        if v < (vmin + 0.125 * dv):
            c[0] = 256 * (0.5 + (v * 4))  # B: 0.5 ~ 1
        elif v < (vmin + 0.375 * dv):
            c[0] = 255
            c[1] = 256 * (v - 0.125) * 4  # G: 0 ~ 1
        elif v < (vmin + 0.625 * dv):
            c[0] = 256 * (-4 * v + 2.5)  # B: 1 ~ 0
            c[1] = 255
            c[2] = 256 * (4 * (v - 0.375))  # R: 0 ~ 1
        elif v < (vmin + 0.875 * dv):
            c[1] = 256 * (-4 * v + 3.5)  # G: 1 ~ 0
            c[2] = 255
        else:
            c[2] = 256 * (-4 * v + 4.5)  # R: 1 ~ 0.5
        return c
    
    
    def colorize(gray_img):
        out = np.zeros(gray_img.shape + (3,))
        for y in range(out.shape[0]):
            for x in range(out.shape[1]):
                out[y, x, :] = get_jet_color(gray_img[y, x], 0, 1)
        return out
    
    
    def pad_right_down_corner(img, stride, pad_value):
        h = img.shape[0]
        w = img.shape[1]
    
        pad = 4 * [None]
        pad[0] = 0  # up
        pad[1] = 0  # left
        pad[2] = 0 if (h % stride == 0) else stride - (h % stride)  # down
        pad[3] = 0 if (w % stride == 0) else stride - (w % stride)  # right
    
        img_padded = img
        pad_up = np.tile(img_padded[0:1, :, :] * 0 + pad_value, (pad[0], 1, 1))
        img_padded = np.concatenate((pad_up, img_padded), axis=0)
        pad_left = np.tile(img_padded[:, 0:1, :] * 0 + pad_value, (1, pad[1], 1))
        img_padded = np.concatenate((pad_left, img_padded), axis=1)
        pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + pad_value, (pad[2], 1, 1))
        img_padded = np.concatenate((img_padded, pad_down), axis=0)
        pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + pad_value, (1, pad[3], 1))
        img_padded = np.concatenate((img_padded, pad_right), axis=1)
    
        return img_padded, pad

     测试效果如下:

  • 相关阅读:
    CF 552(div 3) E Two Teams 线段树,模拟链表
    单词接龙
    书的复制 动规,贪心
    C++文本处理&造轮子
    【NOIP2015】【Luogu2661】信息传递(有向图最小环)
    平时上机练习的注意点(NOIP2018)
    【SHOI2009】【BZOJ2028】会场预约(线段树染色)
    【AHOI2009】【BZOJ1798】Seq 维护序列seq(线段树模板,易错提醒)
    2018 “百度之星”程序设计大赛
    2018 “百度之星”程序设计大赛
  • 原文地址:https://www.cnblogs.com/liuwenhua/p/13141174.html
Copyright © 2011-2022 走看看