zoukankan      html  css  js  c++  java
  • Python中Numpy.nonzero()函数

    Numpy.nonzero()返回的是数组中,非零元素的位置。如果是二维数组就是描述非零元素在几行几列,三维数组则是描述非零元素在第几组中的第几行第几列。

    举例如下:

    二维数组:

    a = np.array([[1, 0, 3], [0, 2, 0], [0, 0, 9]])
    b = np.nonzero(a)
    print(b)

    结果为:(array([0, 0, 1, 2], dtype=int64), array([0, 2, 1, 2], dtype=int64))

    第一个array描述行,第二个array描述列,我们把结果转变下以便理解:

    array[0, 0, 1, 2]

    array[0, 2, 1, 2]

    我们看到第一个非零元素1,在0行0列,对应为加粗数字:

    array[0, 0, 1, 2]

    array[0, 2, 1, 2]

    第二个非零元是3,在0行2列,对应:

    array[0, 0, 1, 2]

    array[0, 2, 1, 2]

    第三个非零元素是2,在1行1列,对应:

    array[0, 0, 1, 2]

    array[0, 2, 1, 2]

    第四个非零元素是9,在2行2列,对应:

    array[0, 0, 1, 2]

    array[0, 2, 1, 2]

    再举一个三维数组的列子:

    a = np.array([[[0,1],[2,0]],[[0,3],[4,0]],[[0,0],[5,0]]])
    b = np.nonzero(a)
    print(b)

    结果为:(array([0, 0, 1, 1, 2], dtype=int64), array([0, 1, 0, 1, 1], dtype=int64), array([1, 0, 1, 0, 0], dtype=int64))

    同样变形下:

    array[0, 0, 1, 1, 2]     描述在第几组

    array[0, 1, 0, 1, 1]     描述行

    array[1, 0, 1, 0, 0]     描述列

    第一个非零元是1,在0组0行1列,对应

    array[0, 0, 1, 1, 2]     

    array[0, 1, 0, 1, 1]     

    array[1, 0, 1, 0, 0] 

    第二个非零元是2,在0组1行0列,对应

    array[0, 0, 1, 1, 2]     

    array[0, 1, 0, 1, 1]     

    array[1, 0, 1, 0, 0] 

    第三个非零元是3,在1组0行1列,对应

    array[0, 0, 1, 1, 2]     

    array[0, 1, 0, 1, 1]     

    array[1, 0, 1, 0, 0] 

    第四个非零元是4,在1组1行0列,对应

    array[0, 0, 1, 1, 2]     

    array[0, 1, 0, 1, 1]     

    array[1, 0, 1, 0, 0] 

    第五个非零元素是5,在2组1行0列,对应

    array[0, 0, 1, 1, 2]     

    array[0, 1, 0, 1, 1]     

    array[1, 0, 1, 0, 0] 

    更高维数计算类似,读者可以自己推导

  • 相关阅读:
    从自然数到有理数
    付费版乐影音下载器使用方法
    Avtiviti之流程变量
    activity(工作流)初步学习记录
    IntelliJ IDEA安装Activiti插件并使用
    golang 性能测试
    Golang性能测试工具PProf应用详解
    java连接ZK的基本操作
    会员体系、积分、等级
    Flink基本概念
  • 原文地址:https://www.cnblogs.com/liuys635/p/11236953.html
Copyright © 2011-2022 走看看