zoukankan      html  css  js  c++  java
  • 在Ubuntu上配置Caffe并行计算环境

    1.实验配置:

    型号:中科曙光I450-G10双路塔式服务器

    CPU:Intel Xeon E5-2620 v2 @2.1GHz x24

    RAM:128GB

    DISK:2TB

    GPU0:NVIDIA Tesla K20C - 用于并行计算

    GPU1:NVIDIA Quadro K620 - 用于图形显示

    OS:Ubuntu 14.04 LTS 64bit Desktop


    2.安装各种开发包

    $ sudo apt-get update && sudo apt-get upgrade

    $ sudo apt-get install build-essential


    3.安装NVIDIA驱动

    1.)关闭lightdm

    进入Ubuntu,按Ctrl+Alt+F1进入tty,登陆tty后输入如下命令

    $ sudo service lightdm stop

    该命令可以关闭lightdm。

    2.)安装驱动

    输入下列命令添加驱动源:

    $ sudo add-apt-repository ppa:xorg-edgers/ppa

    $ sudo apt-get update

    安装340版本驱动:

    $ sudo apt-get install nvidia-340

    安装完成后,继续安装下列包:

    $ sudo apt-get install nvidia-340-uvm

    安装完成后,重启系统。


    4.安装CUDA

    1.)下载CUDA

    输入以下命令解压:

    $ ./cuda6.5.run --extract=/home/username/Documents/

    解压出来3个文件:

    CUDA安装包: cuda-linux64-rel-6.5.14-18749181.run

    NVIDIA驱动: NVIDIA-Linux-x86_64-340.29.run(也可以用这个安装显卡驱动)

    SAMPLE包: cuda-samples-linux-6.5.14-18745345.run

    给各个包增加权限:

    $ sudo chmod +x *.run

    2.)安装CUDA

    通过以下命令安装CUDA,安装英文说明一步一步安装至完成。

    $ sudo ./cuda-linux64-rel-6.5.14-18749181.run

    3.)添加环境变量

    安装后在/etc/profile中添加环境变量:

    # vim /etc/profile

    在最后一行添加:

    PATH=/usr/local/cuda-6.5/bin:$PATH

    export PATH

    :wq!保存后,执行下列命令,使得环境变量立即生效:

    # source /etc/profile

    4.)添加lib库路径

    在/etc/ld.so.conf.d/加入cuda.conf文件:

    # cd /etc/ld.so.conf.d/

    # vim cuda.conf

    内容如下:

    /usr/local/cuda-6.5/lib64

    :wq!保存后,执行下列命令使之立刻生效:

    # ldconfig


    5.安装CUDA SAMPLE

    1.)安装依赖包

    $ sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa-dev

    2.)安装SAMPLE

    $ sudo ./cuda-sample-linux-6.5.14-18745345.run

    3.)编译SAMPLE

    $ sudo /usr/local/cuda-6.5/samples

    $ sudo make

    4.)检验安装

    全部编译完成后,运行deviceQuery

    $ cd samples/bin/x86_64/linux/release

    $ sudo ./deviceQuery

    如果出现以下显卡信息,则驱动和显卡安装成功。

    ./deviceQuery Starting...
    
     CUDA Device Query (Runtime API) version (CUDART static linking)
    
    Detected 2 CUDA Capable device(s)
    
    Device 0: "Tesla K20c"
      CUDA Driver Version / Runtime Version          6.5 / 6.5
      CUDA Capability Major/Minor version number:    3.5
      Total amount of global memory:                 4800 MBytes (5032706048 bytes)
      (13) Multiprocessors, (192) CUDA Cores/MP:     2496 CUDA Cores
      GPU Clock rate:                                706 MHz (0.71 GHz)
      Memory Clock rate:                             2600 Mhz
      Memory Bus Width:                              320-bit
      L2 Cache Size:                                 1310720 bytes
      Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
      Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
      Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
      Total amount of constant memory:               65536 bytes
      Total amount of shared memory per block:       49152 bytes
      Total number of registers available per block: 65536
      Warp size:                                     32
      Maximum number of threads per multiprocessor:  2048
      Maximum number of threads per block:           1024
      Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
      Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
      Maximum memory pitch:                          2147483647 bytes
      Texture alignment:                             512 bytes
      Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
      Run time limit on kernels:                     No
      Integrated GPU sharing Host Memory:            No
      Support host page-locked memory mapping:       Yes
      Alignment requirement for Surfaces:            Yes
      Device has ECC support:                        Enabled
      Device supports Unified Addressing (UVA):      Yes
      Device PCI Bus ID / PCI location ID:           3 / 0
      Compute Mode:
         < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
    
    Device 1: "Quadro K620"
      CUDA Driver Version / Runtime Version          6.5 / 6.5
      CUDA Capability Major/Minor version number:    5.0
      Total amount of global memory:                 2047 MBytes (2146762752 bytes)
      ( 3) Multiprocessors, (128) CUDA Cores/MP:     384 CUDA Cores
      GPU Clock rate:                                1124 MHz (1.12 GHz)
      Memory Clock rate:                             900 Mhz
      Memory Bus Width:                              128-bit
      L2 Cache Size:                                 2097152 bytes
      Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
      Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
      Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
      Total amount of constant memory:               65536 bytes
      Total amount of shared memory per block:       49152 bytes
      Total number of registers available per block: 65536
      Warp size:                                     32
      Maximum number of threads per multiprocessor:  2048
      Maximum number of threads per block:           1024
      Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
      Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
      Maximum memory pitch:                          2147483647 bytes
      Texture alignment:                             512 bytes
      Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
      Run time limit on kernels:                     Yes
      Integrated GPU sharing Host Memory:            No
      Support host page-locked memory mapping:       Yes
      Alignment requirement for Surfaces:            Yes
      Device has ECC support:                        Disabled
      Device supports Unified Addressing (UVA):      Yes
      Device PCI Bus ID / PCI location ID:           130 / 0
      Compute Mode:
         < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
    > Peer access from Tesla K20c (GPU0) -> Quadro K620 (GPU1) : No
    > Peer access from Quadro K620 (GPU1) -> Tesla K20c (GPU0) : No
    
    deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 2, Device0 = Tesla K20c, Device1 = Quadro K620
    Result = PASS


    6.安装Intel Parallel Studio XE

    1.)下载软件

    进入https://software.intel.com/en-us/intel-parallel-studio-xe网址,

    注册Intel® Parallel Studio XE Cluster Edition for Linux*

    然后Intel会给邮箱发一封邮件,里面有下载地址和product serial number。

    我使用的是Intel Parallel Studio 2016。大概3664MB。

    2.)安装软件

    解压parallel_studio_xe_2016.tgz软件

    进入文件夹,运行安装程序:

    $ cd parallel_studio_xe_2016.tgz

    $ ./install_GUI.sh

    然后会出现图形安装界面,一步一步点击next安装完成。

    3.)添加lib库路径

    $ sudo vim /etc/ld.so.conf.d/intel_mkl.conf

    内容如下:

    /opt/intel/lib

    /opt/intel/mkl/lib/intel64

    :wq!保存后,执行下列命令使之立刻生效:

    $ sudo ldconfig


    7.安装OpenCV

    1.)安装依赖库

    $ sudo apt-get install gcc cmake git build-essential libgtk2.0-devpkg-config

    $ sudo apt-get install libavcodec-dev libavformat-dev libjpeg62-dev libtiff4-dev libswscale-dev

    $ sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libdc1394

    $ sudo apt-get install libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

    2.)编译安装OpenCV

    [完全参考此文4-6点:http://blog.csdn.net/ws_20100/article/details/46493293 ]

    Fedora设置和Ubuntu无异。


    8.安装其他的依赖库

    $ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev

    $ sudo apt-get install libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler

    $ sudo apt-get install python-dev python-pip


    9.安装MATLAB

    [完全参考此文:http://blog.csdn.net/ws_20100/article/details/48859951 ]


    10.编译Caffe

    1.)解压Caffe文件

    $ unzip caffe-master.zip /home/username/

    2.)编译Caffe

    进入Caffe根目录,并复制一份Makefile

    $ cd /home/username/caffe-master

    $ cp Makefile.config.example Makefile.config

    修改里面的内容:

    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    # USE_CUDNN := 1
    
    # CPU-only switch (uncomment to build without GPU support).
    # CPU_ONLY := 1
    
    # uncomment to disable IO dependencies and corresponding data layers
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    # USE_OPENCV := 0
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
    		-gencode arch=compute_20,code=sm_21 
    		-gencode arch=compute_30,code=sm_30 
    		-gencode arch=compute_35,code=sm_35 
    		-gencode arch=compute_50,code=sm_50 
    		-gencode arch=compute_50,code=compute_50
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := mkl
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    # BLAS_INCLUDE := /path/to/your/blas
    # BLAS_LIB := /path/to/your/blas
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    MATLAB_DIR := /usr/local/MATLAB/R2014a
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    PYTHON_INCLUDE := /usr/include/python2.7 
    		/usr/lib/python2.7/dist-packages/numpy/core/include
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # ANACONDA_HOME := $(HOME)/anaconda
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
    		# $(ANACONDA_HOME)/include/python2.7 
    		# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include 
    
    # We need to be able to find libpythonX.X.so or .dylib.
    PYTHON_LIB := /usr/lib
    # PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
    # WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    USE_PKG_CONFIG := 1
    
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @

    开始编译:

    $ make all -j24

    编译好了,可以再编译test和runtest

    $ make test

    $ make runtest

    3.)编译Matlab wrapper

    $ make matcaffe

    4.)编译Python wrapper

    $ make pycaffe


    Enjoy~ Written By Timely~

    如果有问题,可以与我交流~

  • 相关阅读:
    Webpack教程二
    Webpack教程一
    整个互联网行业都缺前端工程师?
    Sublime Text 3 搭建 React.js 开发环境
    Javascript的9张思维导图学习
    实现字体外部有描边
    CSS样式重置
    vue使用过滤器 filters:{}
    修改select的默认样式
    onmouseover和onmouseout鼠标移入移出切换图片的几种实现方法
  • 原文地址:https://www.cnblogs.com/lixuebin/p/10814877.html
Copyright © 2011-2022 走看看