1.实验配置:
型号:中科曙光I450-G10双路塔式服务器
CPU:Intel Xeon E5-2620 v2 @2.1GHz x24
RAM:128GB
DISK:2TB
GPU0:NVIDIA Tesla K20C - 用于并行计算
GPU1:NVIDIA Quadro K620 - 用于图形显示
OS:Ubuntu 14.04 LTS 64bit Desktop
2.安装各种开发包
$ sudo apt-get update && sudo apt-get upgrade
$ sudo apt-get install build-essential
3.安装NVIDIA驱动
1.)关闭lightdm
进入Ubuntu,按Ctrl+Alt+F1进入tty,登陆tty后输入如下命令
$ sudo service lightdm stop
该命令可以关闭lightdm。
2.)安装驱动
输入下列命令添加驱动源:
$ sudo add-apt-repository ppa:xorg-edgers/ppa
$ sudo apt-get update
安装340版本驱动:
$ sudo apt-get install nvidia-340
安装完成后,继续安装下列包:
$ sudo apt-get install nvidia-340-uvm
安装完成后,重启系统。
4.安装CUDA
1.)下载CUDA
输入以下命令解压:
$ ./cuda6.5.run --extract=/home/username/Documents/
解压出来3个文件:
CUDA安装包: cuda-linux64-rel-6.5.14-18749181.run
NVIDIA驱动: NVIDIA-Linux-x86_64-340.29.run(也可以用这个安装显卡驱动)
SAMPLE包: cuda-samples-linux-6.5.14-18745345.run
给各个包增加权限:
$ sudo chmod +x *.run
2.)安装CUDA
通过以下命令安装CUDA,安装英文说明一步一步安装至完成。
$ sudo ./cuda-linux64-rel-6.5.14-18749181.run
3.)添加环境变量
安装后在/etc/profile中添加环境变量:
# vim /etc/profile
在最后一行添加:
PATH=/usr/local/cuda-6.5/bin:$PATH
export PATH
:wq!保存后,执行下列命令,使得环境变量立即生效:
# source /etc/profile
4.)添加lib库路径
在/etc/ld.so.conf.d/加入cuda.conf文件:
# cd /etc/ld.so.conf.d/
# vim cuda.conf
内容如下:
/usr/local/cuda-6.5/lib64
:wq!保存后,执行下列命令使之立刻生效:
# ldconfig
5.安装CUDA SAMPLE
1.)安装依赖包
$ sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa-dev
2.)安装SAMPLE
$ sudo ./cuda-sample-linux-6.5.14-18745345.run
3.)编译SAMPLE
$ sudo /usr/local/cuda-6.5/samples
$ sudo make
4.)检验安装
全部编译完成后,运行deviceQuery
$ cd samples/bin/x86_64/linux/release
$ sudo ./deviceQuery
如果出现以下显卡信息,则驱动和显卡安装成功。
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 2 CUDA Capable device(s)
Device 0: "Tesla K20c"
CUDA Driver Version / Runtime Version 6.5 / 6.5
CUDA Capability Major/Minor version number: 3.5
Total amount of global memory: 4800 MBytes (5032706048 bytes)
(13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Clock rate: 706 MHz (0.71 GHz)
Memory Clock rate: 2600 Mhz
Memory Bus Width: 320-bit
L2 Cache Size: 1310720 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 3 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 1: "Quadro K620"
CUDA Driver Version / Runtime Version 6.5 / 6.5
CUDA Capability Major/Minor version number: 5.0
Total amount of global memory: 2047 MBytes (2146762752 bytes)
( 3) Multiprocessors, (128) CUDA Cores/MP: 384 CUDA Cores
GPU Clock rate: 1124 MHz (1.12 GHz)
Memory Clock rate: 900 Mhz
Memory Bus Width: 128-bit
L2 Cache Size: 2097152 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 130 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
> Peer access from Tesla K20c (GPU0) -> Quadro K620 (GPU1) : No
> Peer access from Quadro K620 (GPU1) -> Tesla K20c (GPU0) : No
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 2, Device0 = Tesla K20c, Device1 = Quadro K620
Result = PASS
6.安装Intel Parallel Studio XE
1.)下载软件
进入https://software.intel.com/en-us/intel-parallel-studio-xe网址,
注册Intel® Parallel Studio XE Cluster Edition for Linux*
然后Intel会给邮箱发一封邮件,里面有下载地址和product serial number。
我使用的是Intel Parallel Studio 2016。大概3664MB。
2.)安装软件
解压parallel_studio_xe_2016.tgz软件
进入文件夹,运行安装程序:
$ cd parallel_studio_xe_2016.tgz
$ ./install_GUI.sh
然后会出现图形安装界面,一步一步点击next安装完成。
3.)添加lib库路径
$ sudo vim /etc/ld.so.conf.d/intel_mkl.conf
内容如下:
/opt/intel/lib
/opt/intel/mkl/lib/intel64
:wq!保存后,执行下列命令使之立刻生效:
$ sudo ldconfig
7.安装OpenCV
1.)安装依赖库
$ sudo apt-get install gcc cmake git build-essential libgtk2.0-devpkg-config
$ sudo apt-get install libavcodec-dev libavformat-dev libjpeg62-dev libtiff4-dev libswscale-dev
$ sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libdc1394
$ sudo apt-get install libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
2.)编译安装OpenCV
[完全参考此文4-6点:http://blog.csdn.net/ws_20100/article/details/46493293 ]
Fedora设置和Ubuntu无异。
8.安装其他的依赖库
$ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev
$ sudo apt-get install libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler
$ sudo apt-get install python-dev python-pip
9.安装MATLAB
[完全参考此文:http://blog.csdn.net/ws_20100/article/details/48859951 ]
10.编译Caffe
1.)解压Caffe文件
$ unzip caffe-master.zip /home/username/
2.)编译Caffe
进入Caffe根目录,并复制一份Makefile
$ cd /home/username/caffe-master
$ cp Makefile.config.example Makefile.config
修改里面的内容:
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_LEVELDB := 0
# USE_LMDB := 0
# USE_OPENCV := 0
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20
-gencode arch=compute_20,code=sm_21
-gencode arch=compute_30,code=sm_30
-gencode arch=compute_35,code=sm_35
-gencode arch=compute_50,code=sm_50
-gencode arch=compute_50,code=compute_50
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := mkl
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
MATLAB_DIR := /usr/local/MATLAB/R2014a
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include
# $(ANACONDA_HOME)/include/python2.7
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
USE_PKG_CONFIG := 1
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
开始编译:
$ make all -j24
编译好了,可以再编译test和runtest
$ make test
$ make runtest
3.)编译Matlab wrapper
$ make matcaffe
4.)编译Python wrapper
$ make pycaffe
Enjoy~ Written By Timely~
如果有问题,可以与我交流~