zoukankan      html  css  js  c++  java
  • The Ninth Hunan Collegiate Programming Contest (2013) Problem I

    Problem I

    Interesting Calculator

    There is an interesting calculator. It has 3 rows of button.

    Row 1: button 0, 1, 2, 3, ..., 9. Pressing each button appends that digit to the end of the display.

    Row 2: button +0, +1, +2, +3, ..., +9. Pressing each button adds that digit to the display.

    Row 3: button *0, *1, *2, *3, ..., *9. Pressing each button multiplies that digit to the display.

    Note that it never displays leading zeros, so if the current display is 0, pressing 5 makes it 5 instead of 05. If the current display is 12, you can press button 3, +5, *2 to get 256. Similarly, to change the display from 0 to 1, you can press 1 or +1 (but not both!).

    Each button has a positive cost, your task is to change the display from x to y with minimum cost. If there are multiple ways to do so, the number of presses should be minimized.

    Input

    There will be at most 30 test cases. The first line of each test case contains two integers x and y(0<=x<=y<=105). Each of the 3 lines contains 10 positive integers (not greater than 105), i.e. the costs of each button.

    Output

    For each test case, print the minimal cost and the number of presses.

    Sample Input

    12 256
    1 1 1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1 1 1
    12 256
    100 100 100 1 100 100 100 100 100 100
    100 100 100 100 100 1 100 100 100 100
    100 100 10 100 100 100 100 100 100 100
    

    Output for the Sample Input

    Case 1: 2 2
    Case 2: 12 3
    

    The Ninth Hunan Collegiate Programming Contest (2013)
    Problemsetter: Rujia Liu
    Special Thanks: Feng Chen, Md. Mahbubul Hasan

      典型的广搜,有最优性,用堆来优化可以加速运行,这种试题本质很老,需要认识本质,找准突破口。

    #include <iostream>
    #include <stdio.h>
    #include <queue>
    #include <stdio.h>
    #include <string.h>
    #include <vector>
    #include <queue>
    #include <set>
    #include <algorithm>
    #include <map>
    #include <stack>
    #include <math.h>
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    using namespace std ;
    typedef long long LL ;
    const LL inf=(LL)10000000000000 ;
    int num[4][10] ;
    LL dist[100008] ;
    LL step[100008] ;
    int x, y;
    struct  Node{
         int Num ;
         LL money ;
         LL Step ;
         Node(){} ;
         Node(int n ,LL m ,LL s):Num(n),money(m),Step(s){} ;
         friend bool operator <(const Node A ,const Node B){
              if(A.money==B.money)
                    return A.Step>B.Step ;
              else
                    return A.money>B.money ;
         }
    };
    void bfs(){
        priority_queue<Node>que ;
        fill(step,step+y+1,inf) ;
        fill(dist,dist+y+1,inf) ;
        que.push(Node(x,0,0)) ;
        dist[x]=0 ;
        step[x]=0 ;
        while(!que.empty()){
            Node now=que.top() ;
            que.pop() ;
            if(now.Num==y){
                 return ;
            }
            int next_id ;
            for(int k=1;k<=3;k++){
    
                for(int i=0;i<=9;i++){
                    if(k==1)
                       next_id=now.Num*10+i ;
                    else if(k==2)
                       next_id=now.Num+i ;
                    else if(k==3)
                       next_id=now.Num*i  ;
                    if(next_id>y)
                        continue  ;
                    if(now.money+num[k][i]<dist[next_id]){
                           dist[next_id]=now.money+num[k][i] ;
                           step[next_id]=now.Step+1 ;
                           que.push(Node(next_id,dist[next_id],step[next_id])) ;
                    }
                    else if(now.money+num[k][i]==dist[next_id]){
                           if(now.Step+1<step[next_id]){
                                 step[next_id]=now.Step+1 ;
                                 que.push(Node(next_id,dist[next_id],step[next_id])) ;
                           }
                    }
                }
    
            }
    
        }
    }
    int main(){
        int k=1 ;
        while(scanf("%d%d",&x,&y)!=EOF){
             for(int i=1;i<=3;i++)
                for(int j=0;j<=9;j++)
                    scanf("%d",&num[i][j]) ;
             bfs() ;
             printf("Case %d: ",k++) ;
             cout<<dist[y]<<" "<<step[y]<<endl ;
        }
        return 0 ;
    }
  • 相关阅读:
    Mysql 取整的方法
    方法、选择比努力更重要, 所以既要低头干活,更要抬头看路!
    mysql索引
    MYSQL 存储过程 多表更新异常捕捉和异常处理方式
    JavaScript中in的用法
    中美印日四国程序员比较
    ubuntu下Django的下载与安装(三种方法)
    ubuntu下下载并安装H265(hm.x.x代码和X265代码)
    s3c-u-boot-1.1.6源码分析之一start.s
    s3c-u-boot-1.1.6源码分析
  • 原文地址:https://www.cnblogs.com/liyangtianmen/p/3371178.html
Copyright © 2011-2022 走看看