The number of divisors(约数) about Humble Numbers
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3337 Accepted Submission(s): 1632
Problem Description
A
number whose only prime factors are 2,3,5 or 7 is called a humble
number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18,
20, 21, 24, 25, 27, ... shows the first 20 humble numbers.
Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors.
Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors.
Input
The
input consists of multiple test cases. Each test case consists of one
humble number n,and n is in the range of 64-bits signed integer. Input
is terminated by a value of zero for n.
Output
For each test case, output its divisor number, one line per case.
Sample Input
4
12
0
Sample Output
3
6
Author
lcy
如果n = p1a1p2a2p3a3...pnan 那么根据乘法原理,约数的个数为 (a1+1)*(a2+1)...(an+1)
#include <stdio.h> #include <math.h> #include <iostream> #include <algorithm> #include <string.h> #include <stdlib.h> using namespace std; typedef long long LL; int main() { LL n; while(scanf("%lld",&n)!=EOF,n) { int cnt = 0; int a=0,b=0,c=0,d=0; if(n%2==0) { while(n%2==0) { n/=2; a++; } } if(n%3==0) { while(n%3==0) { n/=3; b++; } } if(n%5==0) { while(n%5==0) { n/=5; c++; } } while(n%7==0) { while(n%7==0) { n/=7; d++; } } printf("%lld ",(LL)(1+a)*(1+b)*(1+c)*(1+d)); } }