zoukankan      html  css  js  c++  java
  • poj 3071 Football(线段树+概率)

    Football
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 2801   Accepted: 1428

    Description

    Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

    Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

    Input

    The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

    Output

    The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

    Sample Input

    2
    0.0 0.1 0.2 0.3
    0.9 0.0 0.4 0.5
    0.8 0.6 0.0 0.6
    0.7 0.5 0.4 0.0
    -1

    Sample Output

    2

    Hint

    In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

    P(2 wins)  P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
    p21p34p23 + p21p43p24
    = 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

    The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

    
    
    
    
    每一个节点记录这个区间每一个队赢的概率。

    
    
    #include <iostream>
    #include <cstdio>
    using namespace std;
    
    const int maxn = 200;
    const double eps = 0.0001;
    struct tree{
        int l , r;
        double win[maxn];
    }a[4*maxn];
    double P[maxn][maxn];
    int N[10] = {1 , 2 , 4 , 8 , 16 , 32 , 64 , 128 , 256 , 512};
    int n;
    
    void initial(){
        for(int i = 0; i < 4*maxn; i++){
            for(int j = 0; j < maxn; j++){
                a[i].win[j] = 0.0;
            }
        }
    }
    
    void build(int l , int r , int k){
        a[k].l = l;
        a[k].r = r;
        if(l == r){
            a[k].win[l] = 1.0;
        }else{
            int mid = (l+r)/2;
            build(l , mid , 2*k);
            build(mid+1 , r , 2*k+1);
            int i = l;
            while(i <= mid){
                for(int j = mid+1; j <= r; j++){
                    a[k].win[i] += a[2*k].win[i]*a[2*k+1].win[j]*P[i][j];
                }
                i++;
            }
            while(i <= r){
                for(int j = l; j <= mid; j++){
                    a[k].win[i] += a[2*k].win[j]*a[2*k+1].win[i]*P[i][j];
                }
                i++;
            }
        }
    }
    
    void readcase(){
        for(int i = 0; i < N[n]; i++){
            for(int j = 0; j < N[n]; j++){
                scanf("%lf" , &P[i][j]);
            }
        }
    }
    
    void computing(){
        build(0 , N[n]-1 , 1);
        int ans = 0;
        for(int i = 1; i < N[n]; i++){
            if(a[1].win[i] - a[1].win[ans] > eps){
                ans = i;
            }
        }
        printf("%d
    " , ans+1);
    }
    
    int main(){
        while(scanf("%d" , &n) && n != -1){
            initial();
            readcase();
            computing();
        }
        return 0;
    }
    


  • 相关阅读:
    硬币游戏 Project Euler 232
    屏幕空间的近似全局光照明(Approximative Global Illumination in Screen Space)
    四维之美
    vertex texture fetching in HLSL, and heightfield normal calculation
    一个VS小插件(跳出括号)
    我的算法书籍收藏
    Algorithms.算法概论.习题答案
    UML用例图教程详解
    大连理工大学软件学院博客地址
    快递查询API,我推荐“爱快递”
  • 原文地址:https://www.cnblogs.com/llguanli/p/7151021.html
Copyright © 2011-2022 走看看