zoukankan      html  css  js  c++  java
  • poj 3071 Football(线段树+概率)

    Football
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 2801   Accepted: 1428

    Description

    Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

    Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

    Input

    The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

    Output

    The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

    Sample Input

    2
    0.0 0.1 0.2 0.3
    0.9 0.0 0.4 0.5
    0.8 0.6 0.0 0.6
    0.7 0.5 0.4 0.0
    -1

    Sample Output

    2

    Hint

    In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

    P(2 wins)  P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
    p21p34p23 + p21p43p24
    = 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

    The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

    
    
    
    
    每一个节点记录这个区间每一个队赢的概率。

    
    
    #include <iostream>
    #include <cstdio>
    using namespace std;
    
    const int maxn = 200;
    const double eps = 0.0001;
    struct tree{
        int l , r;
        double win[maxn];
    }a[4*maxn];
    double P[maxn][maxn];
    int N[10] = {1 , 2 , 4 , 8 , 16 , 32 , 64 , 128 , 256 , 512};
    int n;
    
    void initial(){
        for(int i = 0; i < 4*maxn; i++){
            for(int j = 0; j < maxn; j++){
                a[i].win[j] = 0.0;
            }
        }
    }
    
    void build(int l , int r , int k){
        a[k].l = l;
        a[k].r = r;
        if(l == r){
            a[k].win[l] = 1.0;
        }else{
            int mid = (l+r)/2;
            build(l , mid , 2*k);
            build(mid+1 , r , 2*k+1);
            int i = l;
            while(i <= mid){
                for(int j = mid+1; j <= r; j++){
                    a[k].win[i] += a[2*k].win[i]*a[2*k+1].win[j]*P[i][j];
                }
                i++;
            }
            while(i <= r){
                for(int j = l; j <= mid; j++){
                    a[k].win[i] += a[2*k].win[j]*a[2*k+1].win[i]*P[i][j];
                }
                i++;
            }
        }
    }
    
    void readcase(){
        for(int i = 0; i < N[n]; i++){
            for(int j = 0; j < N[n]; j++){
                scanf("%lf" , &P[i][j]);
            }
        }
    }
    
    void computing(){
        build(0 , N[n]-1 , 1);
        int ans = 0;
        for(int i = 1; i < N[n]; i++){
            if(a[1].win[i] - a[1].win[ans] > eps){
                ans = i;
            }
        }
        printf("%d
    " , ans+1);
    }
    
    int main(){
        while(scanf("%d" , &n) && n != -1){
            initial();
            readcase();
            computing();
        }
        return 0;
    }
    


  • 相关阅读:
    Linq to LLBL Gen Pro LLBL Gen的Linq程序设计
    应用反射技术为Infragistics Solution设计例子程序 代码简洁而且学习的效率高
    ASP.NET Web开发框架之零 项目介绍
    .NET 应用程序界面开发经验总结 设计良好的程序的表现之一就是细节做的还可以
    ORM Querier 基于TransactSQL解析的代码生成利器 帮助开发人员高效快速生成需要的ORM代码
    Visual Studio 2010 开发与调试IronPython脚本 为你的ERP/MIS 应用程序添加脚本功能
    ORM + .NET Remoting 完整例子程序 虽然现在都流行WCF,也没有必要抛弃已经掌握的.NET Remoting
    总结一下ERP .NET程序员必须掌握的.NET技术,掌握了这些技术工作起来才得心应手
    LLBL Gen 元数据编程 LLBL Gen Metadata Programming
    iPhone开发笔记[14/50]:没有开发者证书,先用模拟器也要开发
  • 原文地址:https://www.cnblogs.com/llguanli/p/7151021.html
Copyright © 2011-2022 走看看