zoukankan      html  css  js  c++  java
  • ThreadPoolExecutor源码解析

    LZ目前正在做一个批量生成报表的系统,需要定时批量生成多张报表,便考虑使用线程池来完成。JDK自带的Executors工具类只提供创建固定线程和可伸展但无上限的两个静态方法,并不能满足LZ想自定制线程池大小的要求。于是就直接深入了解下ThreadPoolExecutor类,以方便在工作中灵活使用以及为以后的扩展打下基础。

    java doc中对ThreadPoolExecutor的说明是:

    An ExecutorService that executes each submitted task using one of possibly several pooled threads, normally configured using Executors factory methods.

    一个使用线程池来执行提交的任务的ExecutorService子类,正常通过Executors工具类中的工厂方法进行配置。

    那我们就先看一下比较熟悉的Executors中的几个方法的实现代码:

    Executors.newCachedThreadPool

    public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
      60L, TimeUnit.SECONDS,
      new SynchronousQueue<Runnable>(),
      threadFactory);
    }
    

    Executors.newFixedThreadPool

    public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }
    

    Executors.newSingleThreadExecutor

    public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>(),
                                    threadFactory));
    }
    

    可以看到其实这些方法都是通过构造方法创建了ThreadPoolExecutor对象,我们来看下具体的构造方法实现

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
    }
    

    这里我们可以看到ThreadPoolExecutor中比较重要的一些参数,这些参数都是可以通过外部传入,对ThreadPoolExecutor内部进行控制。而ThreadPoolExecutor内部的工作机制究竟是怎样进行的呢?下面我们就揭开它的外衣,深入其中仔细探究。

    1.ThreadPoolExecutor继承了AbstractExecutorService类

    public class ThreadPoolExecutor extends AbstractExecutorService
    

    2. ThreadPoolExecutor的重要变量参数

    • ctl: 用来标识线程池状态的重要参数,很多操作执行前都需要对线程池状态进行前置判断,以确定线程池状态是否正常

    • workQueue: 任务队列,用来在全部当前线程正在处理任务时存储提交来的任务

    • works: 存储所有工作线程

    • corePoolSize: 核心线程数

    • maximumPoolSize: 最大线程数

    • keepAliveTime: 空闲线程等待任务时间

    • threadFactory: 线程创建工厂

    • handler: 因线程池饱和或关闭触发的拒绝异常处理器

        //标识线程池控制状态
        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
      
        //线程池状态类型
        //接受新的任务并处理队列中的任务
        private static final int RUNNING= -1 << COUNT_BITS;
        //不接受新任务但处理队列中的任务
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        //不接受新任务也不处理队列中的任务,且中断正在进行的任务
        private static final int STOP   =  1 << COUNT_BITS;
        //所有任务已经完结,工作线程数为0,并调用terminated方法
        private static final int TIDYING=  2 << COUNT_BITS;
        //terminated方法执行完成
        private static final int TERMINATED =  3 << COUNT_BITS;
        //任务队列,储存任务以提供给工作线程
        private final BlockingQueue<Runnable> workQueue;
        //主要锁,设置workers和相关数据记录调用
        private final ReentrantLock mainLock = new ReentrantLock();
        //存储所有工作线程,设置时需要加mainLock锁
        private final HashSet<Worker> workers = new HashSet<Worker>();
        //线程池已达到的最大数,设置时需要加mainLock锁
        private int largestPoolSize;
        //已完成任务数,设置时需要加mainLock锁
        private long completedTaskCount;
        //线程创建工厂
        private volatile ThreadFactory threadFactory;
        //因饱和或线程池关闭触发的拒绝异常处理器
        private volatile RejectedExecutionHandler handler;
        //空闲线程等待任务时间(单位:纳秒),到时则会被销毁
        private volatile long keepAliveTime;
        //默认为false,核心线程在空闲时一直存活
        //如果为true,核心线程使用keepAliveTime参数来等待任务
        private volatile boolean allowCoreThreadTimeOut;
        //核心线程数
        private volatile int corePoolSize;
        //最大线程数
        private volatile int maximumPoolSize;
        //默认拒绝异常处理器
        private static final RejectedExecutionHandler defaultHandler =
        new AbortPolicy();
      

    3.execute方法,用户通过该方法提交任务给线程池。

    处理任务分四种种情况:

    1. 如果当前工作线程数小于核心线程数,则创建新的线程来处理任务

    2. 如果当前工作线程等于核心线程数,新提交的任务存储到工作队列中
      重新检测线程池状态是否正常,如果不是运行状态,则移除任务,并处理拒绝异常
      如果线程池正常,工作线程数等于0,则增加工作线程

    3. 当工作队列达到最大容量,工作线程数没有达到最大线程数,增加新的工作线程,并处理任务

    4. 当工作线程数达到最大线程数,则使用拒绝异常处理器对任务进行处理

       public void execute(Runnable command) {
           if (command == null)
               throw new NullPointerException();
           
           int c = ctl.get();
           if (workerCountOf(c) < corePoolSize) {
               if (addWorker(command, true))
                   return;
               c = ctl.get();
           }
           if (isRunning(c) && workQueue.offer(command)) {
               int recheck = ctl.get();
               if (! isRunning(recheck) && remove(command))
                   reject(command);
               else if (workerCountOf(recheck) == 0)
                   addWorker(null, false);
           }
           else if (!addWorker(command, false))
               reject(command);
       }
      

    4.线程池是怎么增加一个新的线程的呢?

    接下来我们来看addWorker方法

    1. 双重for循环检查线程池是否适合增加新的线程

    2. 创建Worker对象并获得mainLock锁

    3. 再次检查状态,防止线程工厂失败或线程池关闭

    4. works增加worker对象,并更新largestPoolSize,释放锁

    5. 启用worker对象中的线程

    6. 由于并发原因,可能会出现线程尚未执行,但线程池正在关闭,因此可能会出现线程池关闭时,错过中断当前线程,因此再进行一次判断,如果线程池状态为关闭且当前线程未被中断,则手动中断它

       private boolean addWorker(Runnable firstTask, boolean core) {
           retry:
           for (;;) {
               int c = ctl.get();
               int rs = runStateOf(c);
               // Check if queue empty only if necessary.
               if (rs >= SHUTDOWN &&
                   ! (rs == SHUTDOWN &&
                      firstTask == null &&
                      ! workQueue.isEmpty()))
                   return false;
               for (;;) {
                   int wc = workerCountOf(c);
                   if (wc >= CAPACITY ||
                       wc >= (core ? corePoolSize : maximumPoolSize))
                       return false;
                   if (compareAndIncrementWorkerCount(c))
                       break retry;
                   c = ctl.get();  // Re-read ctl
                   if (runStateOf(c) != rs)
                       continue retry;
                   // else CAS failed due to workerCount change; retry inner loop
               }
           }
           Worker w = new Worker(firstTask);
           Thread t = w.thread;
           final ReentrantLock mainLock = this.mainLock;
           mainLock.lock();
           try {
               // Recheck while holding lock.
               // Back out on ThreadFactory failure or if
               // shut down before lock acquired.
               int c = ctl.get();
               int rs = runStateOf(c);
               if (t == null ||
                   (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null))) {
                   decrementWorkerCount();
                   tryTerminate();
                   return false;
               }
               workers.add(w);
               int s = workers.size();
               if (s > largestPoolSize)
                   largestPoolSize = s;
           } finally {
               mainLock.unlock();
           }
           t.start();
           // It is possible (but unlikely) for a thread to have been
           // added to workers, but not yet started, during transition to
           // STOP, which could result in a rare missed interrupt,
           // because Thread.interrupt is not guaranteed to have any effect
           // on a non-yet-started Thread (see Thread#interrupt).
           if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted())
               t.interrupt();
           return true;
       }
      

    5.Worker类的实现

    在addWorker方法中,我们并没有看到任务具体执行的操作,但是可以很明显地猜测到应该是在调用t.start()方法时进行调用。而线程t是来自于Worker对象,我们来看下内部类Worker(删除了部分代码)。

    1. Worker类继承自AbstractQueuedSynchronizer,实现了Runnable接口

    2. new Worker()时,通过ThreadFactory的newThread方法创建了一个新的线程

    3. 当调用addWorker中的t.start()时,其实触发的是run方法中的runWorker(this)

       private final class Worker
           extends AbstractQueuedSynchronizer
           implements Runnable
       {
      
           /** Thread this worker is running in.  Null if factory fails. */
           final Thread thread;
           /** Initial task to run.  Possibly null. */
           Runnable firstTask;
           /** Per-thread task counter */
           volatile long completedTasks;
           /**
            * Creates with given first task and thread from ThreadFactory.
            * @param firstTask the first task (null if none)
            */
           Worker(Runnable firstTask) {
               setState(-1); // inhibit interrupts until runWorker
               this.firstTask = firstTask;
               this.thread = getThreadFactory().newThread(this);
           }
           /** Delegates main run loop to outer runWorker  */
           public void run() {
               runWorker(this);
           }
       }
      

    6.runWorker方法是怎么触发任务执行的

    1. while循环保证了线程可以重复执行任务,如果firstTask执行完成后,通过getTask方法从任务队列中获取新的任务继续执行

    2. 执行前和执行后分别调用beforExecute和afterExecute两个钩子方法,可以用来在子类中自己实现,比如用于线程池监控

    3. 如果处理过程中出现意外情况,在finally中调用processWorkerExit进行处理,主要是对线程记录相关变量进行恢复,且处理当核心线程全部超时而任务队列中有新的任务时,重新增加新线程来处理任务

       final void runWorker(Worker w) {
           Thread wt = Thread.currentThread();
           Runnable task = w.firstTask;
           w.firstTask = null;
           w.unlock(); // allow interrupts
           boolean completedAbruptly = true;
           try {
               while (task != null || (task = getTask()) != null) {
                   w.lock();
                   // If pool is stopping, ensure thread is interrupted;
                   // if not, ensure thread is not interrupted.  This
                   // requires a recheck in second case to deal with
                   // shutdownNow race while clearing interrupt
                   if ((runStateAtLeast(ctl.get(), STOP) ||
                        (Thread.interrupted() &&
                         runStateAtLeast(ctl.get(), STOP))) &&
                       !wt.isInterrupted())
                       wt.interrupt();
                   try {
                       beforeExecute(wt, task);
                       Throwable thrown = null;
                       try {
                           task.run();
                       } catch (RuntimeException x) {
                           thrown = x; throw x;
                       } catch (Error x) {
                           thrown = x; throw x;
                       } catch (Throwable x) {
                           thrown = x; throw new Error(x);
                       } finally {
                           afterExecute(task, thrown);
                       }
                   } finally {
                       task = null;
                       w.completedTasks++;
                       w.unlock();
                   }
               }
               completedAbruptly = false;
           } finally {
               processWorkerExit(w, completedAbruptly);
           }
       }
      

    7.getTask方法中是怎么获取任务队列中的任务的

    1. 判断线程池状态是否正常,根据timed = allowCoreThreadTimeout || wc > corePoolSize来决定队列获取任务的方式是指定keepAliveTime时间进行等待还是阻塞式等待

    2. 如果keepAliveTime超时,允许核心线程超时销毁或者当前线程池总量大于核心线程数,则getTask()返回null,回溯到runWorker方法中,则while循环结束,即线程执行完成,此线程将被销毁。

       private Runnable getTask() {
           boolean timedOut = false; // Did the last poll() time out?
           retry:
           for (;;) {
               int c = ctl.get();
               int rs = runStateOf(c);
               // Check if queue empty only if necessary.
               if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                   decrementWorkerCount();
                   return null;
               }
               boolean timed;      // Are workers subject to culling?
               for (;;) {
                   int wc = workerCountOf(c);
                   timed = allowCoreThreadTimeOut || wc > corePoolSize;
                   if (wc <= maximumPoolSize && ! (timedOut && timed))
                       break;
                   if (compareAndDecrementWorkerCount(c))
                       return null;
                   c = ctl.get();  // Re-read ctl
                   if (runStateOf(c) != rs)
                       continue retry;
                   // else CAS failed due to workerCount change; retry inner loop
               }
               try {
                   Runnable r = timed ?
                       workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                       workQueue.take();
                   if (r != null)
                       return r;
                   timedOut = true;
               } catch (InterruptedException retry) {
                   timedOut = false;
               }
           }
       }
  • 相关阅读:
    在浏览器应用中使用 gRPC
    gRPC 客户端工厂集成
    gRPCurl 测试 gRPC 服务
    links
    Flex布局
    使用 IHttpClientFactory 实现复原 HTTP 请求
    Dex Common
    Dex MVVM
    日志
    配置
  • 原文地址:https://www.cnblogs.com/lntea/p/4678069.html
Copyright © 2011-2022 走看看