一个单源多汇的有向图,求增大那些边的容量可以使得网络的最大流增加。
很简单,直接跑最大流,保留残余网络,然后枚举所有余量为0的边,使其容量增加一个1,看看是否出现新的增广路即可。
召唤代码君:
#include <iostream> #include <cstring> #include <cstdio> #include <vector> #define maxn 555 #define maxm 55555 using namespace std; int to[maxm],c[maxm],next[maxm],first[maxn],edge; int d[maxn],tag[maxn],TAG=222; bool can[maxn]; int Q[maxm],bot,top; int n,m,l,s,t; void _init() { edge=-1; for (int i=0; i<=n+m+1; i++) first[i]=-1; } void addedge(int U,int V,int W) { edge++; to[edge]=V,c[edge]=W,next[edge]=first[U],first[U]=edge; edge++; to[edge]=U,c[edge]=0,next[edge]=first[V],first[V]=edge; } bool bfs() { Q[bot=top=1]=t,tag[t]=++TAG,d[t]=0,can[t]=false; while (bot<=top) { int cur=Q[bot++]; for (int i=first[cur]; i!=-1; i=next[i]) if (c[i^1] && tag[to[i]]!=TAG) { tag[to[i]]=TAG,d[to[i]]=d[cur]+1; can[to[i]]=false,Q[++top]=to[i]; if (to[i]==s) return true; } } return false; } int dfs(int cur,int num) { if (cur==t) return num; int tmp=num,k; for (int i=first[cur]; i!=-1; i=next[i]) if (c[i] && d[to[i]]==d[cur]-1 && tag[to[i]]==TAG && !can[to[i]]) { k=dfs(to[i],min(c[i],num)); if (k) num-=k,c[i]-=k,c[i^1]+=k; if (!num) break; } if (num) can[cur]=true; return tmp-num; } int main() { int U,V,W,Flow=0; vector<int> ans; while (scanf("%d%d%d",&n,&m,&l) && (n|m|l)) { _init(); for (int i=1; i<=l; i++) { scanf("%d%d%d",&U,&V,&W); addedge(V,U,W); } s=0,t=n+m+1; for (int i=1; i<=n; i++) addedge(i,t,~0U>>1); while (bfs()) Flow+=dfs(s,~0U>>1); ans.clear(); for (int i=1; i<=l; i++) { if (c[i+i-2]) continue; c[i+i-2]++; if (bfs()) ans.push_back(i); c[i+i-2]--; } if (ans.size()>0) { printf("%d",ans[0]); for (unsigned i=1; i<ans.size(); i++) printf(" %d",ans[i]); } printf(" "); } return 0; }