zoukankan      html  css  js  c++  java
  • pytorch基础(二)

    An easy way

    使用torch.nn.Sequential()来更快地构建神经网络:

    import torch
    import torch.nn.functional as F
    
    
    # replace following class code with an easy sequential network
    class Net(torch.nn.Module):
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(n_feature, n_hidden)   # hidden layer
            self.predict = torch.nn.Linear(n_hidden, n_output)   # output layer
    
        def forward(self, x):
            x = F.relu(self.hidden(x))      # activation function for hidden layer
            x = self.predict(x)             # linear output
            return x
    
    net1 = Net(1, 10, 1)
    
    # easy and fast way to build your network
    net2 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )
    
    
    print(net1)     # net1 architecture
    """
    Net (
      (hidden): Linear (1 -> 10)
      (predict): Linear (10 -> 1)
    )
    """
    
    print(net2)     # net2 architecture
    """
    Sequential (
      (0): Linear (1 -> 10)
      (1): ReLU ()
      (2): Linear (10 -> 1)
    )
    """
    

    Save and reload

    两种保存网络模型的方法:

    torch.save(net1, 'net.pkl')  # save entire net
    torch.save(net1.state_dict(), 'net_params.pkl')   # save only the parameters
    

    读取模型:

    net2 = torch.load('net.pkl')
    prediction = net2(x)
    

    只读取模型参数:

    # restore only the parameters in net1 to net3
    net3 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )
    
    # copy net1's parameters into net3
    net3.load_state_dict(torch.load('net_params.pkl'))
    prediction = net3(x)
    

    Train on batch

    通过Data.DataLoader()中的batch_size参数来控制加载数据时的batch大小

    import torch
    import torch.utils.data as Data
    
    torch.manual_seed(1)    # reproducible
    
    BATCH_SIZE = 5
    # BATCH_SIZE = 8
    
    x = torch.linspace(1, 10, 10)       # this is x data (torch tensor)
    y = torch.linspace(10, 1, 10)       # this is y data (torch tensor)
    
    torch_dataset = Data.TensorDataset(x, y)
    loader = Data.DataLoader(
        dataset=torch_dataset,      # torch TensorDataset format
        batch_size=BATCH_SIZE,      # mini batch size
        shuffle=True,               # random shuffle for training
        num_workers=2,              # subprocesses for loading data
    )
    
    
    def show_batch():
        for epoch in range(3):   # train entire dataset 3 times
            for step, (batch_x, batch_y) in enumerate(loader):  # for each training step
                # train your data...
                print('Epoch: ', epoch, '| Step: ', step, '| batch x: ',
                      batch_x.numpy(), '| batch y: ', batch_y.numpy())
    
    
    if __name__ == '__main__':
        show_batch()
    

    打印结果:

    Epoch:  0 | Step:  0 | batch x:  [ 5.  7. 10.  3.  4.] | batch y:  [6. 4. 1. 8. 7.]
    Epoch:  0 | Step:  1 | batch x:  [2. 1. 8. 9. 6.] | batch y:  [ 9. 10.  3.  2.  5.]
    Epoch:  1 | Step:  0 | batch x:  [ 4.  6.  7. 10.  8.] | batch y:  [7. 5. 4. 1. 3.]
    Epoch:  1 | Step:  1 | batch x:  [5. 3. 2. 1. 9.] | batch y:  [ 6.  8.  9. 10.  2.]
    Epoch:  2 | Step:  0 | batch x:  [ 4.  2.  5.  6. 10.] | batch y:  [7. 9. 6. 5. 1.]
    Epoch:  2 | Step:  1 | batch x:  [3. 9. 1. 8. 7.] | batch y:  [ 8.  2. 10.  3.  4.]
    

    Optimizers

    比较不同的优化方法对网络的影响:

    import torch
    import torch.utils.data as Data
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    
    # torch.manual_seed(1)    # reproducible
    
    LR = 0.01
    BATCH_SIZE = 32
    EPOCH = 12
    
    # fake dataset
    x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
    y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
    
    # plot dataset
    plt.scatter(x.numpy(), y.numpy())
    plt.show()
    
    # put dateset into torch dataset
    torch_dataset = Data.TensorDataset(x, y)
    loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)
    
    
    # default network
    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(1, 20)   # hidden layer
            self.predict = torch.nn.Linear(20, 1)   # output layer
    
        def forward(self, x):
            x = F.relu(self.hidden(x))      # activation function for hidden layer
            x = self.predict(x)             # linear output
            return x
    
    if __name__ == '__main__':
        # different nets
        net_SGD         = Net()
        net_Momentum    = Net()
        net_RMSprop     = Net()
        net_Adam        = Net()
        nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
    
        # different optimizers
        opt_SGD         = torch.optim.SGD(net_SGD.parameters(), lr=LR)
        opt_Momentum    = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
        opt_RMSprop     = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
        opt_Adam        = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
        optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
    
        loss_func = torch.nn.MSELoss()
        losses_his = [[], [], [], []]   # record loss
    
        # training
        for epoch in range(EPOCH):
            print('Epoch: ', epoch)
            for step, (b_x, b_y) in enumerate(loader):          # for each training step
                for net, opt, l_his in zip(nets, optimizers, losses_his):
                    output = net(b_x)              # get output for every net
                    loss = loss_func(output, b_y)  # compute loss for every net
                    opt.zero_grad()                # clear gradients for next train
                    loss.backward()                # backpropagation, compute gradients
                    opt.step()                     # apply gradients
                    l_his.append(loss.data.numpy())     # loss recoder
    
        labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
        for i, l_his in enumerate(losses_his):
            plt.plot(l_his, label=labels[i])
        plt.legend(loc='best')
        plt.xlabel('Steps')
        plt.ylabel('Loss')
        plt.ylim((0, 0.2))
        plt.show()
    

    index.png-45.7kB

    CNN

    # library
    # standard library
    import os
    
    # third-party library
    import torch
    import torch.nn as nn
    import torch.utils.data as Data
    import torchvision
    import matplotlib.pyplot as plt
    
    # torch.manual_seed(1)    # reproducible
    
    # Hyper Parameters
    EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
    BATCH_SIZE = 50
    LR = 0.001              # learning rate
    DOWNLOAD_MNIST = False
    
    
    # Mnist digits dataset
    if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
        # not mnist dir or mnist is empyt dir
        DOWNLOAD_MNIST = True
    
    train_data = torchvision.datasets.MNIST(
        root='./mnist/',
        train=True,                                     # this is training data
        transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                                        # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
        download=DOWNLOAD_MNIST,
    )
    
    # plot one example
    print(train_data.train_data.size())                 # (60000, 28, 28)
    print(train_data.train_labels.size())               # (60000)
    plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
    plt.title('%i' % train_data.train_labels[0])
    plt.show()
    
    # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    
    # pick 2000 samples to speed up testing
    test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
    test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
    test_y = test_data.test_labels[:2000]
    
    
    class CNN(nn.Module):
        def __init__(self):
            super(CNN, self).__init__()
            self.conv1 = nn.Sequential(         # input shape (1, 28, 28)
                nn.Conv2d(
                    in_channels=1,              # input height
                    out_channels=16,            # n_filters
                    kernel_size=5,              # filter size
                    stride=1,                   # filter movement/step
                    padding=2,                  # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
                ),                              # output shape (16, 28, 28)
                nn.ReLU(),                      # activation
                nn.MaxPool2d(kernel_size=2),    # choose max value in 2x2 area, output shape (16, 14, 14)
            )
            self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
                nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
                nn.ReLU(),                      # activation
                nn.MaxPool2d(2),                # output shape (32, 7, 7)
            )
            self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
            output = self.out(x)
            return output, x    # return x for visualization
    
    
    cnn = CNN()
    print(cnn)  # net architecture
    
    optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
    loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted
    
    # following function (plot_with_labels) is for visualization, can be ignored if not interested
    from matplotlib import cm
    try: from sklearn.manifold import TSNE; HAS_SK = True
    except: HAS_SK = False; print('Please install sklearn for layer visualization')
    def plot_with_labels(lowDWeights, labels):
        plt.cla()
        X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
        for x, y, s in zip(X, Y, labels):
            c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
        plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)
    
    plt.ion()
    # training and testing
    for epoch in range(EPOCH):
        for step, (b_x, b_y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader
    
            output = cnn(b_x)[0]               # cnn output
            loss = loss_func(output, b_y)   # cross entropy loss
            optimizer.zero_grad()           # clear gradients for this training step
            loss.backward()                 # backpropagation, compute gradients
            optimizer.step()                # apply gradients
    
            if step % 50 == 0:
                test_output, last_layer = cnn(test_x)
                pred_y = torch.max(test_output, 1)[1].data.numpy()
                accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
                if HAS_SK:
                    # Visualization of trained flatten layer (T-SNE)
                    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
                    plot_only = 500
                    low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
                    labels = test_y.numpy()[:plot_only]
                    plot_with_labels(low_dim_embs, labels)
    plt.ioff()
    
    # print 10 predictions from test data
    test_output, _ = cnn(test_x[:10])
    pred_y = torch.max(test_output, 1)[1].data.numpy()
    print(pred_y, 'prediction number')
    print(test_y[:10].numpy(), 'real number')
    

    参考:

    1. MorvanZhou/PyTorch-Tutorial
  • 相关阅读:
    这是一段Java程序员写给最爱的老婆的代码。
    第一次来写博客,这里可以记录很多故事。
    转 JavaScript前端和Java后端的AES加密和解密
    java webservice浏览器测试地址
    Eclipse4.5在线安装Aptana插件及配置代码提示教程
    彻底的卸载干净oracle 11g(转)
    oracle查看编码以及修改编码(转)
    关于AngularJs数据递归呈现的实现的几种方式
    ionic的ngModel指令失效
    AngularJS 自定义指令详解
  • 原文地址:https://www.cnblogs.com/lokvahkoor/p/12243513.html
Copyright © 2011-2022 走看看