zoukankan      html  css  js  c++  java
  • 基于生成模型的中文聊天机器人

    这次采用的数据集为12万对话语料青云库.csv,这份语料的质量还是不错的,内容也比较生活化。更多的语料数据可见:中文公开聊天语料库

    首先,项目依赖:

    import re
    import os
    import csv
    import math
    import random
    import codecs
    import itertools
    import unicodedata
    from io import open
    
    import torch
    from torch.jit import script, trace
    import torch.nn as nn
    from torch import optim
    import torch.nn.functional as F
    import jieba
    
    
    USE_CUDA = torch.cuda.is_available()
    device = torch.device("cuda" if USE_CUDA else "cpu")
    

    准备数据

    读取数据,然后打印几行看看语料质量:

    
    file_path = '/content/drive/Shared drives/A/data/raw_chat_corpus/qingyun-11w'
    corpus_name = "qingyun-11w"
    corpus = os.path.join(file_path, corpus_name)
    
    def printLines(file, n=10):
        with open(file, 'r') as file_pipeline:
          for index, line in enumerate(file_pipeline):
              qa = line.split('|')
              print(qa)
              if index > 5:
                return
    
    printLines(os.path.join(file_path, "12万对话语料青云库.csv"))
    

    打印结果:

    ['南京在哪里 ', ' 在这里了
    ']
    ['咋死???红烧还是爆炒 ', ' 哦了哦了哦了,咱聊点别的吧
    ']
    ['孩纸,新年快乐 ', ' {r+}同乐同乐,大家一起乐~
    ']
    ['那重点是什么 ', ' 好话不分轻重!
    ']
    ['在上一条我回复你,你怎么不回复我 ', ' 我也要思考啊,不能随便回你话吧,那会让你觉得菲菲好笨的
    ']
    

    可以看到,语料的基本质量还是可以的,不过其中还有一些不必要的符号,后续处理时要过滤掉

    分词

    分别试了一下词向量和字向量,发现中文还是字向量效果更好

    word_wise = False # True: 分词, False:分字
    word_segmentation_path = os.path.join(file_path, 'word_segmentation.txt')  # 保存分词后的结果
    
    def clean_zh_text(text):
        # 只保留数字,中文及常用中文标点(逗号/句号/感叹号/问号)
        comp = re.compile('[^0-9^u4e00-u9fa5^,。!?]')
        return comp.sub('', text)
    
    def word_filter(words):
        # 去掉空字符,把jieba返回的生成器转化为字符串
        result = []
        for word in words:
          word = clean_zh_text(word)
          if word == '':
            continue
          else:
            result.append(word)
        return ' '.join(result)
    
    def cut_sentences(input_file, output_file):
        with open(input_file, 'r') as input_pipeline, open(output_file, 'w') as output_pipeline:
          for index, line in enumerate(input_pipeline):
              qa = line.split('|')
              question = word_filter(jieba.cut(qa[0]) if word_wise else qa[0])
              answer = word_filter(jieba.cut(qa[1]) if word_wise else qa[1])
              result = '	'.join([question, answer])
              output_pipeline.write(result + '
    ')
    
    cut_sentences(os.path.join(file_path, "12万对话语料青云库.csv"), word_segmentation_path)
    printLines(word_segmentation_path)
    

    创建词典

    # 预定义的token
    PAD_token = 0  # 表示padding 
    SOS_token = 1  # 句子的开始 
    EOS_token = 2  # 句子的结束 
    
    class Voc:
        def __init__(self, name):
            self.name = name
            self.trimmed = False
            self.word2index = {}
            self.word2count = {}
            self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
            self.num_words = 3  # 目前有SOS, EOS, PAD这3个token。
    
        def addSentence(self, sentence):
            for word in sentence.split(' '):
                self.addWord(word)
    
        def addWord(self, word):
            if word not in self.word2index:
                self.word2index[word] = self.num_words
                self.word2count[word] = 1
                self.index2word[self.num_words] = word
                self.num_words += 1
            else:
                self.word2count[word] += 1
    
        # 删除频次小于min_count的token 
        def trim(self, min_count):
            if self.trimmed:  # 避免重复删减
                return
            self.trimmed = True
    
            keep_words = []
    
            for k, v in self.word2count.items():
                if v >= min_count:
                    keep_words.append(k)
    
            print('keep_words {} / {} = {:.4f}'.format(
                len(keep_words), len(self.word2index), len(keep_words) / len(self.word2index)
            ))
    
            # 重新构造词典 
            self.word2index = {}
            self.word2count = {}
            self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
            self.num_words = 3 # Count default tokens
            
            # 统计词频的目的就是为了trim,因此词典重新构造后这里就不保留词频了
            for word in keep_words:
                self.addWord(word)
    
    MAX_LENGTH = 15  # 句子最大长度设定为15个词(包括EOS等特殊词)
    
    # 读取问答句对并且返回Voc词典对象 
    def readVocs(datafile, corpus_name):
        print("Reading lines...")
        # 文件每行读取到list lines中。 
        lines = open(datafile, encoding='utf-8').
            read().strip().split('
    ')
        # 每行用tab切分成问答两个句子
        pairs = [[s for s in l.split('	')] for l in lines]
        voc = Voc(corpus_name)
        return voc, pairs
    
    def filterPair(p): 
        return len(p[0].split(' ')) < MAX_LENGTH and len(p[1].split(' ')) < MAX_LENGTH
    
    # 过滤太长的句对 
    def filterPairs(pairs):
        return [pair for pair in pairs if filterPair(pair)]
    
    # 使用上面的函数进行处理,返回Voc对象和句对的list 
    def loadPrepareData(corpus_name, datafile):
        print("Start preparing training data ...")
        voc, pairs = readVocs(datafile, corpus_name)
        print("Read {!s} sentence pairs".format(len(pairs)))
        pairs = filterPairs(pairs)
        print("Trimmed to {!s} sentence pairs".format(len(pairs)))
        print("Counting words...")
        for pair in pairs:
            voc.addSentence(pair[0])
            voc.addSentence(pair[1])
        print("Counted words:", voc.num_words)
        return voc, pairs
    
    
    save_dir = "/content/drive/Shared drives/A/temp_file/zh_seq2seq_chatbot"
    voc, pairs = loadPrepareData(corpus_name, word_segmentation_path)
    
    print("
    QA句对:")
    for pair in pairs[:10]:
        print(pair)
    

    为了收敛更快,我们可以去除掉一些低频词:

    MIN_COUNT = 2    # 低频词阈值设为2
    
    
    def trimRareWords(voc, pairs, MIN_COUNT):
        # 去掉voc中频次小于3的词 
        voc.trim(MIN_COUNT)
        # 保留的句对 
        keep_pairs = []
        for pair in pairs:
            input_sentence = pair[0]
            output_sentence = pair[1]
            keep_input = True
            keep_output = True
            # 检查问题
            for word in input_sentence.split(' '):
                if word not in voc.word2index:
                    keep_input = False
                    break
            # 检查答案
            for word in output_sentence.split(' '):
                if word not in voc.word2index:
                    keep_output = False
                    break
    
            # 如果问题和答案都只包含高频词,我们才保留这个句对
            if keep_input and keep_output:
                keep_pairs.append(pair)
    
        print("Trimmed from {} pairs to {}, {:.4f} of total".format(len(pairs), 
    		len(keep_pairs), len(keep_pairs) / len(pairs)))
        return keep_pairs
    
    
    # 实际进行处理
    pairs = trimRareWords(voc, pairs, MIN_COUNT)
    

    构建数据集

    # 把句子的词变成ID
    def indexesFromSentence(voc, sentence):
        return [voc.word2index[word] for word in sentence.split(' ')] + [EOS_token]
    
    # sentences是多个长度不同句子(list),使用zip_longest padding成定长,长度为最长句子的长度。
    def zeroPadding(sentences, fillvalue=PAD_token):
        return list(itertools.zip_longest(*sentences, fillvalue=fillvalue))
    
    # sentences是二维的padding后的list
    # 返回m和sentences的大小一样,如果某个位置是padding,那么值为0,否则为1
    # 这里的m就是mask矩阵
    def binaryMatrix(sentences, value=PAD_token):
        m = []
        for i, seq in enumerate(sentences):
            m.append([])
            for token in seq:
                if token == PAD_token:
                    m[i].append(0)
                else:
                    m[i].append(1)
        return m
    
    # 把输入句子变成ID,然后再padding,同时返回lengths这个list,标识实际长度。
    # 返回的padVar是一个LongTensor,shape是(batch, max_length),
    # lengths是一个list,长度为(batch,),表示每个句子的实际长度。
    def inputVar(sentences, voc):
        indexes_batch = [indexesFromSentence(voc, sentence) for sentence in sentences]
        lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
        padList = zeroPadding(indexes_batch)
        padVar = torch.LongTensor(padList)
        return padVar, lengths
    
    # 对输出句子进行padding,然后用binaryMatrix得到每个位置是padding(0)还是非padding,
    # 同时返回最大最长句子的长度(也就是padding后的长度)
    # 返回值padVar是LongTensor,shape是(batch, max_target_length)
    # mask是ByteTensor,shape也是(batch, max_target_length)
    def outputVar(sentences, voc):
        indexes_batch = [indexesFromSentence(voc, sentence) for sentence in sentences]
        max_target_len = max([len(indexes) for indexes in indexes_batch])
        padList = zeroPadding(indexes_batch)
        mask = binaryMatrix(padList)
        mask = torch.ByteTensor(mask)
        mask = mask.bool()  # 避免警告:masked_select received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead.
        padVar = torch.LongTensor(padList)
        return padVar, mask, max_target_len
    
    # 处理一个batch的pair句对 
    def batch2TrainData(voc, pair_batch):
        # 按照句子的长度(词数)排序
        pair_batch.sort(key=lambda x: len(x[0].split(" ")), reverse=True)
        input_batch, output_batch = [], []
        for pair in pair_batch:
            input_batch.append(pair[0])
            output_batch.append(pair[1])
        inp, lengths = inputVar(input_batch, voc)
        output, mask, max_target_len = outputVar(output_batch, voc)
        return inp, lengths, output, mask, max_target_len
    
    
    # 示例
    small_batch_size = 5
    batches = batch2TrainData(voc, [random.choice(pairs) for _ in range(small_batch_size)])
    input_variable, lengths, target_variable, mask, max_target_len = batches
    
    print("input_variable:", input_variable)
    print("lengths:", lengths)
    print("target_variable:", target_variable)
    print("mask:", mask)
    print("max_target_len:", max_target_len)
    

    定义模型

    Encoder

    class EncoderRNN(nn.Module):
        def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
            super(EncoderRNN, self).__init__()
            self.n_layers = n_layers
            self.hidden_size = hidden_size
            self.embedding = embedding
    
            # 初始化GRU,这里输入和hidden大小都是hidden_size,这里假设embedding层的输出大小是hidden_size
            # 如果只有一层,那么不进行Dropout,否则使用传入的参数dropout进行GRU的Dropout。
            self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
                              dropout=(0 if n_layers == 1 else dropout), bidirectional=True)
    
        def forward(self, input_seq, input_lengths, hidden=None):
            # 输入是(max_length, batch),Embedding之后变成(max_length, batch, hidden_size)
            embedded = self.embedding(input_seq)
            packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
            outputs, hidden = self.gru(packed, hidden)
            outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs)
            outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:]
            # 返回最终的输出和最后时刻的隐状态。 
            return outputs, hidden
    

    Attention

    # Luong 注意力layer
    class Attn(torch.nn.Module):
        def __init__(self, method, hidden_size):
            super(Attn, self).__init__()
            self.method = method
            if self.method not in ['dot', 'general', 'concat']:
                raise ValueError(self.method, "is not an appropriate attention method.")
            self.hidden_size = hidden_size
            if self.method == 'general':
                self.attn = torch.nn.Linear(self.hidden_size, hidden_size)
            elif self.method == 'concat':
                self.attn = torch.nn.Linear(self.hidden_size * 2, hidden_size)
                self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size))
    
        def dot_score(self, hidden, encoder_output):
            # 输入hidden的shape是(1, batch=64, hidden_size=500)
            # encoder_outputs的shape是(input_lengths=10, batch=64, hidden_size=500)
            # hidden * encoder_output得到的shape是(10, 64, 500),然后对第3维求和就可以计算出score。
            return torch.sum(hidden * encoder_output, dim=2)
    
        def general_score(self, hidden, encoder_output):
            energy = self.attn(encoder_output)
            return torch.sum(hidden * energy, dim=2)
    
        def concat_score(self, hidden, encoder_output):
            energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), 
    				      encoder_output), 2)).tanh()
            return torch.sum(self.v * energy, dim=2)
        
        # 输入是上一个时刻的隐状态hidden和所有时刻的Encoder的输出encoder_outputs
        # 输出是注意力的概率,也就是长度为input_lengths的向量,它的和加起来是1。
        def forward(self, hidden, encoder_outputs):
            # 计算注意力的score,输入hidden的shape是(1, batch=64, hidden_size=500),
            # 表示t时刻batch数据的隐状态
            # encoder_outputs的shape是(input_lengths=10, batch=64, hidden_size=500) 
            if self.method == 'general':
                attn_energies = self.general_score(hidden, encoder_outputs)
            elif self.method == 'concat':
                attn_energies = self.concat_score(hidden, encoder_outputs)
            elif self.method == 'dot':
                # 计算内积,参考dot_score函数
                attn_energies = self.dot_score(hidden, encoder_outputs)
    
            # Transpose max_length and batch_size dimensions
            # 把attn_energies从(max_length=10, batch=64)转置成(64, 10)
            attn_energies = attn_energies.t()
    
            # 使用softmax函数把score变成概率,shape仍然是(64, 10),然后用unsqueeze(1)变成
            # (64, 1, 10) 
            return F.softmax(attn_energies, dim=1).unsqueeze(1)
    

    Decoder

    class LuongAttnDecoderRNN(nn.Module):
        def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
            super(LuongAttnDecoderRNN, self).__init__()
    
            # 把参数保存到self里,attn_model就是前面定义的Attn类的对象。
            self.attn_model = attn_model
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.n_layers = n_layers
            self.dropout = dropout
    
            # 定义Decoder的layers
            self.embedding = embedding
            self.embedding_dropout = nn.Dropout(dropout)
            self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
            self.concat = nn.Linear(hidden_size * 2, hidden_size)
            self.out = nn.Linear(hidden_size, output_size)
    
            self.attn = Attn(attn_model, hidden_size)
    
        def forward(self, input_step, last_hidden, encoder_outputs):
            # 注意:decoder每一步只能处理一个时刻的数据,因为t时刻计算完了才能计算t+1时刻。
            # input_step的shape是(1, 64),64是batch,1是当前输入的词ID(来自上一个时刻的输出)
            # 通过embedding层变成(1, 64, 500),然后进行dropout,shape不变。
            embedded = self.embedding(input_step)
            embedded = self.embedding_dropout(embedded)
            # 把embedded传入GRU进行forward计算
            # 得到rnn_output的shape是(1, 64, 500)
            # hidden是(2, 64, 500),因为是两层的GRU,所以第一维是2。
            rnn_output, hidden = self.gru(embedded, last_hidden)
            # 计算注意力权重, 根据前面的分析,attn_weights的shape是(64, 1, 10)
            attn_weights = self.attn(rnn_output, encoder_outputs)
            
            context = attn_weights.bmm(encoder_outputs.transpose(0, 1))
            # 把context向量和GRU的输出拼接起来
            # rnn_output从(1, 64, 500)变成(64, 500)
            rnn_output = rnn_output.squeeze(0)
            # context从(64, 1, 500)变成(64, 500)
            context = context.squeeze(1)
            # 拼接得到(64, 1000)
            concat_input = torch.cat((rnn_output, context), 1)
            concat_output = torch.tanh(self.concat(concat_input))
    
            # out是(500, 词典大小=7826)    
            output = self.out(concat_output)
            # 用softmax变成概率,表示当前时刻输出每个词的概率。
            output = F.softmax(output, dim=1)
            # 返回 output和新的隐状态 
            return output, hidden
    

    Masked损失

    def maskNLLLoss(inp, target, mask):
        # 计算实际的词的个数,因为padding是0,非padding是1,因此sum就可以得到词的个数
        nTotal = mask.sum()
        
        # 交叉熵这里使用了gather函数,这是一种比较底层的实现方法。更简便的方法可以使用CrossEntropyLoss或者NLLLoss
        crossEntropy = -torch.log(torch.gather(inp, 1, target.view(-1, 1)).squeeze(1))
        loss = crossEntropy.masked_select(mask).mean()
        loss = loss.to(device)
        return loss, nTotal.item()
    
    
    # gather函数可以让我们在不用for循环的前提下,把batch中正确类别的预测概率找出来
    # inp = torch.tensor([[0.3, 0.2, 0.4, 0.1], [0.2, 0.1, 0.4, 0.3]])
    # target = torch.tensor([2, 3])  # 第一组的第三个结果是正确的,第二组的第四个结果是正确的
    # selected = torch.gather(inp, 1, target.view(-1, 1))
    # print(selected)
    # 输出:
    # tensor([[ 0.4000],
    #     [ 0.3000]])
    
    

    定义训练过程

    def train(input_variable, lengths, target_variable, mask, max_target_len, encoder, decoder, embedding,
              encoder_optimizer, decoder_optimizer, batch_size, clip, max_length=MAX_LENGTH):
    
        # 梯度清空
        encoder_optimizer.zero_grad()
        decoder_optimizer.zero_grad()
    
        # 设置device,从而支持GPU,当然如果没有GPU也能工作。
        input_variable = input_variable.to(device)
        lengths = lengths.to(device)
        target_variable = target_variable.to(device)
        mask = mask.to(device)
    
        # 初始化变量
        loss = 0
        print_losses = []
        n_totals = 0
    
        # encoder的Forward计算
        encoder_outputs, encoder_hidden = encoder(input_variable, lengths)
    
        # Decoder的初始输入是SOS,我们需要构造(1, batch)的输入,表示第一个时刻batch个输入。
        decoder_input = torch.LongTensor([[SOS_token for _ in range(batch_size)]])
        decoder_input = decoder_input.to(device)
    
        # 注意:Encoder是双向的,而Decoder是单向的,因此从下往上取n_layers个
        decoder_hidden = encoder_hidden[:decoder.n_layers]
    
        # 确定是否teacher forcing
        use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
    
        # 一次处理一个时刻 
        if use_teacher_forcing:
            for t in range(max_target_len):
                decoder_output, decoder_hidden = decoder(
                    decoder_input, decoder_hidden, encoder_outputs
                )
                # Teacher forcing: 下一个时刻的输入是当前正确答案
                decoder_input = target_variable[t].view(1, -1)
                # 计算累计的loss
                mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
                loss += mask_loss
                print_losses.append(mask_loss.item() * nTotal)
                n_totals += nTotal
        else:
            for t in range(max_target_len):
                decoder_output, decoder_hidden = decoder(
                    decoder_input, decoder_hidden, encoder_outputs
                )
                # 不是teacher forcing: 下一个时刻的输入是当前模型预测概率最高的值
                _, topi = decoder_output.topk(1)
                decoder_input = torch.LongTensor([[topi[i][0] for i in range(batch_size)]])
                decoder_input = decoder_input.to(device)
                # 计算累计的loss
                mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
                loss += mask_loss
                print_losses.append(mask_loss.item() * nTotal)
                n_totals += nTotal
    
        # 反向计算 
        loss.backward()
    
        # 对encoder和decoder进行梯度裁剪
        _ = torch.nn.utils.clip_grad_norm_(encoder.parameters(), clip)
        _ = torch.nn.utils.clip_grad_norm_(decoder.parameters(), clip)
    
        # 更新参数
        encoder_optimizer.step()
        decoder_optimizer.step()
    
        return sum(print_losses) / n_totals
    

    定义迭代过程

    def trainIters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer, 
                  embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size, 
                  print_every, save_every, clip, corpus_name, loadFilename):
    
        # 随机选择n_iteration个batch的数据(pair)
        training_batches = [batch2TrainData(voc, [random.choice(pairs) for _ in range(batch_size)])
                          for _ in range(n_iteration)]
    
        # 初始化
        print('Initializing ...')
        start_iteration = 1
        print_loss = 0
        if loadFilename:
            start_iteration = checkpoint['iteration'] + 1
    
        # 训练
        print("Training...")
        for iteration in range(start_iteration, n_iteration + 1):
            training_batch = training_batches[iteration - 1]
            
            input_variable, lengths, target_variable, mask, max_target_len = training_batch
    
            # 训练一个batch的数据
            loss = train(input_variable, lengths, target_variable, mask, max_target_len, encoder,
                         decoder, embedding, encoder_optimizer, decoder_optimizer, batch_size, clip)
            print_loss += loss
    
            # 进度
            if iteration % print_every == 0:
                print_loss_avg = print_loss / print_every
                print("Iteration: {}; Percent complete: {:.1f}%; Average loss: {:.4f}"
    			.format(iteration, iteration / n_iteration * 100, print_loss_avg))
                print_loss = 0
    
            # 保存checkpoint
            if (iteration % save_every == 0):
                directory = os.path.join(save_dir, model_name, corpus_name, '{}-{}_{}'
    		.format(encoder_n_layers, decoder_n_layers, hidden_size))
                if not os.path.exists(directory):
                    os.makedirs(directory)
                torch.save({
                    'iteration': iteration,
                    'en': encoder.state_dict(),
                    'de': decoder.state_dict(),
                    'en_opt': encoder_optimizer.state_dict(),
                    'de_opt': decoder_optimizer.state_dict(),
                    'loss': loss,
                    'voc_dict': voc.__dict__,
                    'embedding': embedding.state_dict()
                }, os.path.join(directory, '{}_{}.tar'.format(iteration, 'checkpoint')))
    

    定义测试方法

    class GreedySearchDecoder(nn.Module):
        def __init__(self, encoder, decoder):
            super(GreedySearchDecoder, self).__init__()
            self.encoder = encoder
            self.decoder = decoder
    
        def forward(self, input_seq, input_length, max_length):
            # Encoder的Forward计算 
            encoder_outputs, encoder_hidden = self.encoder(input_seq, input_length)
            # 把Encoder最后时刻的隐状态作为Decoder的初始值
            decoder_hidden = encoder_hidden[:decoder.n_layers]
            # 因为我们的函数都是要求(time,batch),因此即使只有一个数据,也要做出二维的。
            # Decoder的初始输入是SOS
            decoder_input = torch.ones(1, 1, device=device, dtype=torch.long) * SOS_token
            # 用于保存解码结果的tensor
            all_tokens = torch.zeros([0], device=device, dtype=torch.long)
            all_scores = torch.zeros([0], device=device)
            # 循环,这里只使用长度限制,后面处理的时候把EOS去掉了。
            for _ in range(max_length):
                # Decoder forward一步
                decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, 
    								encoder_outputs)
                # decoder_outputs是(batch=1, vob_size)
                # 使用max返回概率最大的词和得分
                decoder_scores, decoder_input = torch.max(decoder_output, dim=1)
                # 把解码结果保存到all_tokens和all_scores里
                all_tokens = torch.cat((all_tokens, decoder_input), dim=0)
                all_scores = torch.cat((all_scores, decoder_scores), dim=0)
                # decoder_input是当前时刻输出的词的ID,这是个一维的向量,因为max会减少一维。
                # 但是decoder要求有一个batch维度,因此用unsqueeze增加batch维度。
                decoder_input = torch.unsqueeze(decoder_input, 0)
            # 返回所有的词和得分。
            return all_tokens, all_scores
    
    def evaluate(encoder, decoder, searcher, voc, sentence, max_length=MAX_LENGTH):
        # 把输入的一个batch句子变成id
        indexes_batch = [indexesFromSentence(voc, sentence)]
        # 创建lengths tensor
        lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
        # 转置 
        input_batch = torch.LongTensor(indexes_batch).transpose(0, 1)
        # 放到合适的设备上(比如GPU)
        input_batch = input_batch.to(device)
        lengths = lengths.to(device)
        # 用searcher解码
        tokens, scores = searcher(input_batch, lengths, max_length)
        # ID变成词。
        decoded_words = [voc.index2word[token.item()] for token in tokens]
        return decoded_words
    
    
    def evaluateInput(encoder, decoder, searcher, voc):
        input_sentence = ''
        while(1):
            try:
                # 得到用户终端的输入
                input_sentence = input('> ')
                # 是否退出
                if input_sentence == 'q' or input_sentence == 'quit': break
                # 句子归一化
                input_sentence = word_filter(jieba.cut(input_sentence) if word_wise else input_sentence)
                # 生成响应Evaluate sentence
                output_words = evaluate(encoder, decoder, searcher, voc, input_sentence)
                # 去掉EOS后面的内容
                words = []
                for word in output_words:
                    if word == 'EOS':
                        break
                    elif word != 'PAD':
                        words.append(word)
                print('Bot:', ''.join(words))
    
            except KeyError:
                print("Error: Encountered unknown word.")
    

    初始化模型

    # 配置模型
    model_name = 'cb_model'
    attn_model = 'dot'
    #attn_model = 'general'
    #attn_model = 'concat'
    hidden_size = 500
    encoder_n_layers = 2
    decoder_n_layers = 2
    dropout = 0.1
    batch_size = 64
    
    # 从哪个checkpoint恢复,如果是None,那么从头开始训练。
    loadFilename = None
    checkpoint_iter = 4000
      
    
    # 如果loadFilename不空,则从中加载模型 
    if loadFilename:
        # 如果训练和加载是一条机器,那么直接加载 
        checkpoint = torch.load(loadFilename)
        # 否则比如checkpoint是在GPU上得到的,但是我们现在又用CPU来训练或者测试,那么注释掉下面的代码
        #checkpoint = torch.load(loadFilename, map_location=torch.device('cpu'))
        encoder_sd = checkpoint['en']
        decoder_sd = checkpoint['de']
        encoder_optimizer_sd = checkpoint['en_opt']
        decoder_optimizer_sd = checkpoint['de_opt']
        embedding_sd = checkpoint['embedding']
        voc.__dict__ = checkpoint['voc_dict']
    
    
    print('Building encoder and decoder ...')
    # 初始化word embedding
    embedding = nn.Embedding(voc.num_words, hidden_size)
    if loadFilename:
        embedding.load_state_dict(embedding_sd)
    # 初始化encoder和decoder模型
    encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout)
    decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size, voc.num_words, 
    				decoder_n_layers, dropout)
    if loadFilename:
        encoder.load_state_dict(encoder_sd)
        decoder.load_state_dict(decoder_sd)
    # 使用合适的设备
    encoder = encoder.to(device)
    decoder = decoder.to(device)
    print('Models built and ready to go!')
    

    训练

    # 配置训练的超参数和优化器 
    clip = 50.0
    teacher_forcing_ratio = 1.0
    learning_rate = 0.0001
    decoder_learning_ratio = 5.0
    n_iteration = 4000
    print_every = 1
    save_every = 500
    
    # 设置进入训练模式,从而开启dropout 
    encoder.train()
    decoder.train()
    
    # 初始化优化器 
    print('Building optimizers ...')
    encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate * decoder_learning_ratio)
    if loadFilename:
        encoder_optimizer.load_state_dict(encoder_optimizer_sd)
        decoder_optimizer.load_state_dict(decoder_optimizer_sd)
    
    # 开始训练
    print("Starting Training!")
    trainIters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer,
               embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size,
               print_every, save_every, clip, corpus_name, loadFilename)
    

    输出:

    Building optimizers ...
    Starting Training!
    Initializing ...
    Training...
    Iteration: 1; Percent complete: 0.0%; Average loss: 8.3130
    Iteration: 2; Percent complete: 0.1%; Average loss: 8.2717
    Iteration: 3; Percent complete: 0.1%; Average loss: 8.2047
    Iteration: 4; Percent complete: 0.1%; Average loss: 8.1339
    Iteration: 5; Percent complete: 0.1%; Average loss: 7.9634
    Iteration: 6; Percent complete: 0.1%; Average loss: 7.6764
    Iteration: 7; Percent complete: 0.2%; Average loss: 7.3193
    Iteration: 8; Percent complete: 0.2%; Average loss: 7.0421
    
    ...
    
    Iteration: 3992; Percent complete: 99.8%; Average loss: 1.8682
    Iteration: 3993; Percent complete: 99.8%; Average loss: 1.3369
    Iteration: 3994; Percent complete: 99.9%; Average loss: 1.7045
    Iteration: 3995; Percent complete: 99.9%; Average loss: 1.3252
    Iteration: 3996; Percent complete: 99.9%; Average loss: 1.5306
    Iteration: 3997; Percent complete: 99.9%; Average loss: 1.3957
    Iteration: 3998; Percent complete: 100.0%; Average loss: 1.6272
    Iteration: 3999; Percent complete: 100.0%; Average loss: 1.1216
    Iteration: 4000; Percent complete: 100.0%; Average loss: 1.1116
    

    测试

    # 进入eval模式,从而去掉dropout。 
    encoder.eval()
    decoder.eval()
    
    # 构造searcher对象 
    searcher = GreedySearchDecoder(encoder, decoder)
    
    # 测试
    evaluateInput(encoder, decoder, searcher, voc)
    

    看看效果, 感觉还可以:

    > 你叫什么名字?
    Bot: 我叫菲菲
    > 我也叫菲菲
    Bot: 你不觉得这个话题没什么意思么
    > 好吧,是没啥意思
    Bot: 哦
    > 嘿嘿
    Bot: 哇靠,你咋笑得这么猥琐
    > 。。。
    Bot: 不要这样说嘛
    

    参考:

    1. chatbot_tutorial
    2. pytorch-book
    3. 使用PyTorch实现Chatbot
  • 相关阅读:
    洛谷P1330 封锁阳光大学
    洛谷P1341 无序字母对
    Bzoj1059 [ZJOI2007]矩阵游戏
    POJ2337 Catenyms
    Bzoj2342 [Shoi2011]双倍回文
    Bzoj1009 [HNOI2008]GT考试
    Bzoj3670 [Noi2014]动物园
    POJ2406 Power Strings
    POJ 2752 Seek the Name, Seek the Fame
    POJ3522 Slim Span
  • 原文地址:https://www.cnblogs.com/lokvahkoor/p/12757290.html
Copyright © 2011-2022 走看看