zoukankan      html  css  js  c++  java
  • hdu 5806 NanoApe Loves Sequence Ⅱ (尺取法)

    NanoApe Loves Sequence Ⅱ

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/131072 K (Java/Others)
    Total Submission(s): 500    Accepted Submission(s): 242


    Problem Description
    NanoApe, the Retired Dog, has returned back to prepare for for the National Higher Education Entrance Examination!

    In math class, NanoApe picked up sequences once again. He wrote down a sequence with n numbers and a number m on the paper.

    Now he wants to know the number of continous subsequences of the sequence in such a manner that the k-th largest number in the subsequence is no less than m.

    Note : The length of the subsequence must be no less than k.
     
    Input
    The first line of the input contains an integer T, denoting the number of test cases.

    In each test case, the first line of the input contains three integers n,m,k.

    The second line of the input contains n integers A1,A2,...,An, denoting the elements of the sequence.

    1T10, 2n200000, 1kn/2, 1m,Ai109
     
    Output
    For each test case, print a line with one integer, denoting the answer.
     
    Sample Input
    1
    7 4 2
    4 2 7 7 6 5 1
     
    Sample Output
    18
     
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <map>
    #include <set>
    using namespace std;
    #define ll long long
    int s[200010];
    int main() {
        int t;
        scanf("%d", &t);
        while(t--) {
            ll n,k,t;
            scanf("%I64d %I64d %I64d", &n, &t, &k);
            s[0] = 0;
            for(int i = 1; i <= n; i++) {
                s[i] = s[i-1];
                int tmp;
                scanf("%d", &tmp);
                if(tmp >= t) s[i]++;
            }
            ll beg = 0, end = k, ans = 0;
            while(end <= n) {
                while(s[end] - s[beg] >= k)beg++;
                ans += beg;
                end++; 
            }
            printf("%I64d
    ", ans);
        }
        return 0;
    }
  • 相关阅读:
    【Liunx】centos防火墙
    【Liunx】基础命令
    【Flask】CBV模式
    【Flask】第三方插件
    【Flask】登录练习
    【Flask】特殊装饰器
    【Flask】蓝图
    Django之视图层
    Django之路由控制配置
    Django之静态文件配置
  • 原文地址:https://www.cnblogs.com/lonewanderer/p/5745707.html
Copyright © 2011-2022 走看看