查看数据的前五行
tips = sns.load_dataset("tips")
tips.head()
引入数据,布置横向画布
g = sns.FacetGrid(tips, col='time')
g = sns.FacetGrid(tips, col='time')
g.map(plt.hist, "tip") #以tip为横轴画柱状图
g = sns.FacetGrid(tips, col="sex", hue="smoker")
g.map(plt.scatter, "total_bill", "tip", alpha=.7) #绘制散点图,设置横纵轴,设置透明度
g.add_legend() #加上如下图标注的图例
g = sns.FacetGrid(tips, row="smoker", col="time", margin_titles=True) #设置行列布局方式
g.map(sns.regplot, "size", "total_bill", color=".1", fit_reg=True, x_jitter=.1) #fit_reg画出回归线,x_jitter为摆动程度
画出柱形图
g = sns.FacetGrid(tips, col="day", size=4, aspect=.5)
g.map(sns.barplot, "sex", "total_bill")
from pandas import Categorical
ordered_days = tips.day.value_counts().index
print(ordered_days)
查看day的排列顺序
CategoricalIndex(['Sat', 'Sun', 'Thur', 'Fri'], categories=['Thur', 'Fri', 'Sat', 'Sun'], ordered=False, dtype='category')
重新设置行的排列顺序
ordered_days = Categorical(["Thur", "Sun", "Fri", "Sat"])
g = sns.FacetGrid(tips, row="day", row_order=ordered_days, size=1.7, aspect=4)
g.map(sns.boxplot, "total_bill")
(盒图能够自动识别哪个变量是离散型,哪个是连续型,然后对连续型构造盒图。)
例如以下代码
1 import seaborn as sns 2 import numpy as np 3 import pandas as pd 4 import matplotlib as mpl 5 from pandas import Categorical 6 import matplotlib.pyplot as plt 7 8 tips = sns.load_dataset("tips") #seaborn内置数据集,DaraFram类型 9 print(tips.head()) 10 ordered_days = Categorical(["Thur", "Sun", "Fri", "Sat"]) 11 print(type(ordered_days)) 12 print(ordered_days) 13 g = sns.FacetGrid(tips, row="day", row_order=ordered_days, size=1.7, aspect=4) 14 g.map(sns.boxplot, "total_bill", "sex") 15 16 plt.show()
运行结果如下,函数识别出sex是离散型变量,所以对sex进行分类,然后在每一个类别上对连续型变量total_bill构造盒图。
还可以用FacertGrid的palette参数给hue的列的不同类设置不同颜色,代码如下
1 import seaborn as sns 2 import numpy as np 3 import pandas as pd 4 import matplotlib as mpl 5 from pandas import Categorical 6 import matplotlib.pyplot as plt 7 8 tips = sns.load_dataset("tips") #seaborn内置数据集,DaraFram类型 9 print(tips.head()) 10 pal = dict(Lunch="seagreen", Dinner="gray") 11 g = sns.FacetGrid(data=tips, hue="time", palette=pal, size=5) 12 g.map(plt.scatter, "total_bill", "tip", s=50, alpha=0.7, linewidths=0.5, edgecolors="white") 13 g.add_legend() 14 plt.show()
运行结果如下
如果再设置marker参数,可指定用什么图标画散点,可以是三角形或圆形等
1 import seaborn as sns 2 import numpy as np 3 import pandas as pd 4 import matplotlib as mpl 5 from pandas import Categorical 6 import matplotlib.pyplot as plt 7 8 tips = sns.load_dataset("tips") #seaborn内置数据集,DaraFram类型 9 print(tips.head()) 10 pal = dict(Lunch="seagreen", Dinner="gray") 11 g = sns.FacetGrid(data=tips, hue="time", palette=pal, size=5, hue_kws={"marker":['^', 'v']}) 12 g.map(plt.scatter, "total_bill", "tip", s=50, alpha=0.7, linewidths=0.5, edgecolors="white") 13 g.add_legend() 14 plt.show()
还有一些小调整:set_axis_labels()函数可以自定义x和y轴名字,set(xticks, yticks)可以自定义x和y轴的刻度。fig.subplots_adjust()函数可以调整子图之间
的间隔和距离边框的大小。edgecolors可以设置散点周围的边缘颜色。
1 import seaborn as sns 2 import numpy as np 3 import pandas as pd 4 import matplotlib as mpl 5 from pandas import Categorical 6 import matplotlib.pyplot as plt 7 8 tips = sns.load_dataset("tips") #seaborn内置数据集,DaraFram类型 9 print(tips.head()) 10 with sns.axes_style("white"): 11 g = sns.FacetGrid(tips, row="sex", col="smoker", margin_titles=True, size=2.5) 12 g.map(plt.scatter, "total_bill", "tip", color="#334488", edgecolors="white", lw=0.5) 13 g.set_axis_labels("Total_bill", "Tip") 14 g.set(xticks=[10, 30, 50], yticks=[2, 6, 10]) 15 g.fig.subplots_adjust(wspace=0.25, hspace=0.25) 16 plt.show()
可以用PairGrid对数据中的列进行两两配对绘制散点图,当然也可以指定要配对的列。
1 import seaborn as sns 2 import numpy as np 3 import pandas as pd 4 import matplotlib as mpl 5 from pandas import Categorical 6 import matplotlib.pyplot as plt 7 8 iris = sns.load_dataset("iris") 9 g = sns.PairGrid(data=iris, vars=["sepal_length", "sepal_width"], hue="species") 10 g.add_legend() 11 g.map_offdiag(plt.scatter) 12 g.map_diag(plt.hist) 13 plt.show()
函数PairGrid()中的vars参数指定要两两进行绘图的列,这些列是数据集的子列。map_offdiag和map_diag分别设置非对角的和对角的图使用的统计图类型。
1 import seaborn as sns 2 import numpy as np 3 import pandas as pd 4 import matplotlib as mpl 5 from pandas import Categorical 6 import matplotlib.pyplot as plt 7 8 iris = sns.load_dataset("iris") 9 g = sns.PairGrid(data=iris, vars=["sepal_length", "sepal_width"], hue="species") 10 g.add_legend() 11 g.map_offdiag(plt.scatter) 12 g.map_diag(plt.hist) 13 plt.show()