zoukankan      html  css  js  c++  java
  • 对旋转矩阵R做(行)初等变换会发生什么?

     前言:最近在做一个有意思的问题,关于旋转矩阵变换后会发生什么?开始猜想对其做行初等变换,应该不会改变旋转矩阵的实质的旋转性质。但测试结果好像跟猜想不太一样?

     测试:

      1、第一次对旋转矩阵R的某一行乘上一个数,然后将R转换为欧拉角和四元数;

      2、第二次对旋转矩阵R的某一行乘上一个数加到另一行上,然后将R转换为欧拉角和四元数;

    图1 测试1

     图2 测试2

    代码:

    #include <iostream>
    #include <stdlib.h>
    #include <Eigen/Eigen>
    #include <Eigen/Geometry>
    #include <Eigen/Core>
    #include <vector>
    #include <math.h>
    using namespace std;
    using namespace Eigen;
    
    Eigen::Quaterniond euler2Quaternion(const double roll, const double pitch, const double yaw)
    {
        Eigen::AngleAxisd rollAngle(roll, Eigen::Vector3d::UnitZ());
        Eigen::AngleAxisd yawAngle(yaw, Eigen::Vector3d::UnitY());
        Eigen::AngleAxisd pitchAngle(pitch, Eigen::Vector3d::UnitX());
        Eigen::Quaterniond q = rollAngle * yawAngle * pitchAngle;
        q.normalize();
        cout << "Euler2Quaternion result is:" << endl;
        cout << "x = " << q.x() << endl;
        cout << "y = " << q.y() << endl;
        cout << "z = " << q.z() << endl;
        cout << "w = " << q.w() << endl << endl;
        return q;
    }
    
    Eigen::Vector3d Quaterniond2Euler(const double x, const double y, const double z, const double w)
    {
        Eigen::Quaterniond q;
        q.x() = x;
        q.y() = y;
        q.z() = z;
        q.w() = w;
        Eigen::Vector3d euler = q.toRotationMatrix().eulerAngles(2, 1, 0);
        cout << "Quaterniond2Euler result is:" << endl;
        cout << "x = " << euler[2] << endl;
        cout << "y = " << euler[1] << endl;
        cout << "z = " << euler[0] << endl << endl;
    
        return euler;
    }
    
    Eigen::Matrix3d Quaternion2RotationMatrix(const double x, const double y, const double z, const double w)
    {
        Eigen::Quaterniond q;
        q.x() = x;
        q.y() = y;
        q.z() = z;
        q.w() = w;
        Eigen::Matrix3d R = q.normalized().toRotationMatrix();
        cout << "Quaternion2RotationMatrix result is:" << endl;
        cout << "R = " << endl << R << endl << endl;
        return R;
    }
    Eigen::Quaterniond rotationMatrix2Quaterniond(Eigen::Matrix3d R)
    {
        Eigen::Quaterniond q = Eigen::Quaterniond(R);
        q.normalize();
        cout << "RotationMatrix2Quaterniond result is:" << endl;
        cout << "x = " << q.x() << endl;
        cout << "y = " << q.y() << endl;
        cout << "z = " << q.z() << endl;
        cout << "w = " << q.w() << endl << endl;
        return q;
    }
    
    Eigen::Matrix3d euler2RotationMatrix(const double roll, const double pitch, const double yaw)
    {
        Eigen::AngleAxisd rollAngle(roll, Eigen::Vector3d::UnitZ());
        Eigen::AngleAxisd yawAngle(yaw, Eigen::Vector3d::UnitY());
        Eigen::AngleAxisd pitchAngle(pitch, Eigen::Vector3d::UnitX());
        Eigen::Quaterniond q = rollAngle * yawAngle * pitchAngle;
        Eigen::Matrix3d R = q.matrix();
        cout << "Euler2RotationMatrix result is:" << endl;
        cout << "R = " << endl << R << endl << endl;
        return R;
    }
    Eigen::Vector3d RotationMatrix2euler(Eigen::Matrix3d R)
    {
        Eigen::Matrix3d m;
        m = R;
        Eigen::Vector3d euler = m.eulerAngles(0, 1, 2);
        cout << "RotationMatrix2euler result is:" << endl;
        cout << "x = " << euler[2] << endl;
        cout << "y = " << euler[1] << endl;
        cout << "z = " << euler[0] << endl << endl;
        return euler;
    }
    
    Eigen::Matrix3d matrixTransion(Eigen::Matrix3d& R)
    {
        Eigen::Matrix3d M(R);
    
        //M(0, 2) = R(0, 1) * (-1) * 3 + R(0, 2);
        //M(1, 2) = R(1, 1) * (-1) * 3 + R(1, 2);
        //M(2, 2) = R(2, 1) * (-1) * 3 + R(2, 2);
    
        M(2, 0) = R(0, 0)*3 + R(2, 0);
        M(2, 1) = R(0, 1)*3 + R(2, 1);
        M(2, 2) = R(0, 2)*3 + R(2, 2);
    
        return M;
    }
    
    
    
    int main(int argc, char **argv)
    {
        //this is euler2Quaternion transform function,please input your euler angle//
        //euler2Quaternion(2.55356, - 0.751701, -35.1082);    //-0.0148858, -0.00671055, -1.30948
        //Eigen::Quaterniond q = Eigen::Quaterniond(-0.00482526, 0.00153114, 0.997521, -0.0701826);
        //q.normalize();
        //cout << " test q:: "<< endl;
        //cout << "x = " << q.x() << endl;
        //cout << "y = " << q.y() << endl;
        //cout << "z = " << q.z() << endl;
        //cout << "w = " << q.w() << endl << endl;
        //"w":1.23782,"x":-0.013243,"y":-0.00426015,"z":-0.390197
    
        //this is Quaternion2Euler transform function,please input your euler angle//
        //Quaterniond2Euler(0, 0, 0, 1);
    
        //this is Quaternion2RotationMatrix transform function,please input your Quaternion parameter//
        //Quaternion2RotationMatrix(0, 0, 0, 1);
    
        //this is euler2RotationMatrix transform function,please input your euler angle for the function parameter//
        Eigen::Matrix3d R = euler2RotationMatrix(-0.0148858, -0.00671055, -1.30948);
        rotationMatrix2Quaterniond(R);
        RotationMatrix2euler(R);
    
        Eigen::Matrix3d M = matrixTransion(R);
        //this is rotationMatrix2Quaterniond transform function,please input your RotationMatrix parameter like following//
        rotationMatrix2Quaterniond(M);
    
        //this is RotationMatrix2euler transform function,please input your euler angle for the function parameter//
        RotationMatrix2euler(M);
    
        return 0;
    }

      结论:变换前后欧拉角和四元数变化了,这说明旋转矩阵R 是不能做初等变换的,而且齐次变换矩阵T(RT)也是不能做初等变换的。

  • 相关阅读:
    数据准备2 数据清洗
    数据准备1 数据导入、导出
    数据分析基本流程 Python基本数据类型 Python各种括号的使用方式
    fineBI 学习成果展示1
    未确认融资收益的计算
    合同现金流量
    公允价值持续计算的金额
    发放股票股利
    权益法未实现内部交易损益的调整
    营业外收入入不入损益
  • 原文地址:https://www.cnblogs.com/lovebay/p/13181153.html
Copyright © 2011-2022 走看看