注意这题要求互相认识
不认识的人之间连一条线
一个人在组1,那么不认识(互相认识)的人就在组0;同时这些人不认识的人就在组1.每个联通分量都可以独立推导,遇到矛盾则无解
一个联通分量有一个核心,其他的点是分支
我感觉紫书写的样例又是有点问题,应该是4在0,那么135在1,反正则反;而不是1在0,345在1
然后一个联通分量的核心在一组,分支就在另一组;
设0组比1组多d,就对应d加一个或者减一个值
相当于背包
矛盾状况就是任意个联通分量不能二分染色
#include<cstdio> #include<cstring> #include<iostream> #include<vector> #include<algorithm> using namespace std; const int maxn = 100 + 5; int n, G[maxn][maxn], color[maxn], diff[maxn], cc; vector<int> team[maxn][2]; // team[cc][c] is the list of people in connected-component cc, color c // returns false if not bipartite graph bool dfs(int u, int c) { color[u] = c; team[cc][c-1].push_back(u); for(int v = 0; v < n; v++) { if(u != v && !(G[u][v] && G[v][u])) { // u and v 不互相认识 if(color[v] > 0 && color[v] == color[u]) return false; if(!color[v] && !dfs(v, 3-c)) return false; } } return true; } bool build_graph() { memset(color, 0, sizeof(color)); cc = 0; // current connected-component for(int i = 0; i < n; i++) if(!color[i]) { team[cc][0].clear(); //存染成1的 team[cc][1].clear(); //染成2的 if(!dfs(i, 1)) return false; diff[cc] = team[cc][0].size() - team[cc][1].size(); cc++; } return true; } // d[i][j+n] = 1 iff we can arrange first i cc so that team 1 has j more people than team 2. int d[maxn][maxn*2], teamno[maxn]; void print(int ans) { vector<int> team1, team2; for(int i = cc-1; i >= 0; i--) { int t; if(d[i][ans-diff[i]+n]) { t = 0; ans -= diff[i]; } else { t = 1; ans += diff[i]; } for(int j = 0; j < team[i][t].size(); j++) team1.push_back(team[i][t][j]); for(int j = 0; j < team[i][1^t].size(); j++) team2.push_back(team[i][1^t][j]); } printf("%d", team1.size()); for(int i = 0; i < team1.size(); i++) printf(" %d", team1[i]+1); printf(" "); printf("%d", team2.size()); for(int i = 0; i < team2.size(); i++) printf(" %d", team2[i]+1); printf(" "); } void dp() { memset(d, 0, sizeof(d)); d[0][0+n] = 1; for(int i = 0; i < cc; i++) for(int j = -n; j <= n; j++) if(d[i][j+n]) { d[i+1][j+diff[i]+n] = 1; d[i+1][j-diff[i]+n] = 1; } for(int ans = 0; ans <= n; ans++) { //差的绝对值尽量小即可 if(d[cc][ans+n]) { print(ans); return; } if(d[cc][-ans+n]) { print(-ans); return; } } } int main() { int T; cin >> T; while(T--) { cin >> n; memset(G, 0, sizeof(G)); for(int u = 0; u < n; u++) { int v; while(cin >> v && v) G[u][v-1] = 1; //认识 } if(n == 1 || !build_graph()) cout << "No solution "; else dp(); cout << " "; } return 0; }