简单算法O(n^2):冒泡法<简单选择排序<直接插入排序(性能比较)
改进算法:希尔排序、堆排序、归并排序、快速排序
数组交换语句swap()
1 void swap(int* sortList,int intA,int intB) 2 { 3 int a=sortList[intA]; 4 sortList[intA]=sortList[intB]; 5 sortList[intB]=a; 6 }
冒泡法(改进)
void BubbleSort(int* sortList,int len) { bool isOrder=false; //哨兵 for(int i=0;(i<len-1)&&!isOrder;i++) { isOrder=true; for(int j=len-1;j>=i;j--) { if(sortList[j]<sortList[j-1]) { swap(sortList,j,j-1); isOrder=false; } } } }
简单选择排序
void SimpleSort(int* sortList, int len) { int minIndex; for(int i=0;i<len;i++) { minIndex=i; for(int j=i+1;j<len;j++) { if(sortList[i]>sortList[j]) minIndex=j; } if(minIndex!=i) swap(sortList,i,minIndex); } }
直接插入排序
1 void DirectInsertionSort(int* sortList,int len) 2 { 3 int tempInt; 4 for(int i=1;i<len;i++) 5 { 6 if(sortList[i]>sortList[i-1])continue; 7 8 tempInt=sortList[i]; 9 int j; 10 for(j=i-1;sortList[j]>tempInt&&j>=0;j--) 11 { 12 sortList[j+1]=sortList[j]; 13 } 14 15 sortList[j+1]=tempInt; 16 } 17 }
改进算法
希尔排序
1 void ShellSort(int* sortList,int len) 2 { 3 int g=len; 4 do 5 { 6 g=g/3+1; 7 for(int i=0;i<g;i++) 8 { 9 for(int j=i+g;j<len;j+=g) 10 { 11 if(sortList[j]<sortList[j-g]) 12 { 13 int temp=sortList[j]; 14 int k=j-g; 15 while(sortList[k]>temp&&k>=0) 16 { 17 sortList[k+g]=sortList[k]; 18 k-=g; 19 } 20 sortList[k+g]=temp; 21 } 22 } 23 } 24 }while(g>1); 25 }
堆排序(注意数组从1开始)
1 void HeapSort(int* sortList,int len) 2 { 3 4 for(int j=len/2;j>0;j--) 5 { 6 HeapAdjust(sortList,j,len); 7 } 8 9 for(int fn=len;fn>1;fn--) 10 { 11 swap(sortList,1,fn); 12 HeapAdjust(sortList,1,fn-1); 13 } 14 } 15 16 void HeapAdjust(int* sortList,int r,int k) 17 { 18 int temp,j; 19 temp=sortList[r]; 20 for(j=2*r;j<=k;j=j*2) 21 { 22 if(j<k&&sortList[j]<sortList[j+1]) 23 j++; 24 if(temp>=sortList[j]) 25 break; 26 sortList[r]=sortList[j]; 27 r=j; 28 } 29 sortList[r]=temp; 30 }
归并排序
递归思想
1 const int MAXSIZE=10000; 2 3 void MergeSort(int* sortList,int len) 4 { 5 MSort(sortList,sortList,0,len-1); 6 } 7 8 void MSort(int* SR,int* TR,int st,int fn) 9 { 10 int* TR2=new int[MAXSIZE]; 11 int mid; 12 if(st==fn) 13 { 14 TR[st]=SR[st]; 15 } 16 else 17 { 18 mid=(st+fn)/2; 19 MSort(SR,TR2,st,mid); 20 MSort(SR,TR2,mid+1,fn); 21 Merge(TR2,TR,st,mid,fn); 22 } 23 delete[] TR2; 24 } 25 26 void Merge(int* TR2,int* TR,int st,int mid,int fn) 27 { 28 int index,s1,s2; 29 index=st; 30 for(s1=st,s2=mid+1;s1<=mid&&s2<=fn;index++) 31 { 32 if(TR2[s1]<TR2[s2]) 33 { 34 TR[index]=TR2[s1++]; 35 } 36 else 37 { 38 TR[index]=TR2[s2++]; 39 } 40 } 41 42 if(s1<=mid) 43 for(s1;s1<=mid;s1++) 44 TR[index++]=TR2[s1]; 45 46 if(s2<=fn) 47 for(s2;s2<=fn;s2++) 48 TR[index++]=TR2[s2]; 49 }
快速排序
1 void QuitSort(int* sortList,int len) 2 { 3 QSort(sortList,0,len-1); 4 } 5 6 void QSort(int* sortList,int low,int high) 7 { 8 int pivot; 9 if(low<high) 10 { 11 pivot=Partition(sortList,low,high); 12 QSort(sortList,low,pivot-1); 13 QSort(sortList,pivot+1,high); 14 } 15 } 16 17 int Partition(int* sortList,int low,int high) 18 { 19 int pivot=sortList[low]; 20 while(low<high) 21 { 22 while(high>low&&sortList[high]>=pivot) 23 high--; 24 swap(sortList,low,high); 25 while(high>low&&sortList[low]<=pivot) 26 low++; 27 swap(sortList,low,high); 28 } 29 return low; 30 }