zoukankan      html  css  js  c++  java
  • Meta-Learning through Hebbian Plasticity in Random Networks源代码分析

    Github:https://github.com/enajx/HebbianMetaLearning

    Blog:https://www.cnblogs.com/lucifer1997/p/14656603.html

    Evolution Strategies as a Scalable Alternative to Reinforcement Learning

    # Algorithm 2. Salimans, 2017: https://arxiv.org/abs/1703.03864

    Meta-Learning through Hebbian Plasticity in Random Networks

    HebbianMetaLearning/evolution_strategy_hebb.py:

    • class EvolutionStrategyHebb(object):

      单独进化赫布系数;赫布系数与CNN参数/初始权重共同进化;

    • run:
        def run(self, iterations, print_step=10, path='heb_coeffs'):
            id_ = str(int(time.time()))
            if not exists(path + '/' + id_):
                mkdir(path + '/' + id_)
                
            print('Run: ' + id_ + '
    
    ........................................................................
    ')
                
            pool = mp.Pool(self.num_threads) if self.num_threads > 1 else None
            
            generations_rewards = []
    
            # Algorithm 2. Salimans, 2017: https://arxiv.org/abs/1703.03864
            for iteration in range(iterations): 
    
                # Evolution of Hebbian coefficients & coevolution of cnn parameters and/or initial weights
                if self.pixel_env or self.coevolve_init:                
                    population = self._get_population() # Sample normal noise: Step 5
                    population_coevolved = self._get_population(coevolved_param=True) # Sample normal noise: Step 5
                    rewards = self._get_rewards_coevolved(pool, population, population_coevolved) # Compute population fitness: Step 6   
                    self._update_coeffs(rewards, population) # Update coefficients: Steps 8->12
                    self._update_coevolved_param(rewards, population_coevolved) # Update coevolved parameters: Steps 8->12
                    
                # Evolution of Hebbian coefficients
                else:
                    population = self._get_population() # Sample normal noise: Step 5
                    rewards = self._get_rewards(pool, population) # Compute population fitness: Step 6
                    self._update_coeffs(rewards, population) # Update coefficients: Steps 8->12
                    
                # Print fitness and save Hebbian coefficients and/or Coevolved / CNNs parameters
                if (iteration + 1) % print_step == 0:
                    rew_ = rewards.mean()
                    print('iter %4i | reward: %3i |  update_factor: %f  lr: %f | sum_coeffs: %i sum_abs_coeffs: %4i' % (iteration + 1, rew_ , self.update_factor, self.learning_rate, int(np.sum(self.coeffs)), int(np.sum(abs(self.coeffs)))), flush=True)
                    
                    if rew_ > 100:
                        torch.save(self.get_coeffs(), path + "/"+ id_ + '/HEBcoeffs__' + self.environment + "__rew_" + str(int(rew_)) + '__' + self.hebb_rule + "__init_" + str(self.init_weights) + "__pop_" + str(self.POPULATION_SIZE) + '__coeffs' + "__{}.dat".format(iteration))
                        if self.coevolve_init:
                            torch.save(self.get_coevolved_parameters(), path + "/"+ id_ + '/HEBcoeffs__' + self.environment + "__rew_" + str(int(rew_)) + '__' + self.hebb_rule + "__init_" + str(self.init_weights) + "__pop_" + str(self.POPULATION_SIZE) + '__coevolved_initial_weights' + "__{}.dat".format(iteration))
                        elif self.pixel_env:
                            torch.save(self.get_coevolved_parameters(), path + "/"+ id_ + '/HEBcoeffs__' + self.environment + "__rew_" + str(int(rew_)) + '__' + self.hebb_rule + "__init_" + str(self.init_weights) + "__pop_" + str(self.POPULATION_SIZE) + '__CNN_parameters' + "__{}.dat".format(iteration))
                            
                    generations_rewards.append(rew_)
                    np.save(path + "/"+ id_ + '/Fitness_values_' + id_ + '_' + self.environment + '.npy', np.array(generations_rewards))
           
            if pool is not None:
                pool.close()
                pool.join()
    View Code 
    • _get_population:
        def _get_population(self, coevolved_param = False):
    
            population = []
                
            if coevolved_param == False:
                for i in range(int(self.POPULATION_SIZE / 2)):
                    x1 = []
                    x2 = []
    
                    for w in self.coeffs:
                        # j: (coefficients_per_synapse, 1) eg. (5, 1)
                        j = np.random.randn(*w.shape) 
                        # x1, x2: (coefficients_per_synapse, number of synapses) eg. (92690, 5)
                        x1.append(j) 
                        x2.append(-j) 
    
                    # population: (population size, coefficients_per_synapse, number of synapses), eg. (10, 92690, 5)
                    population.append(x1) 
                    population.append(x2)
                    
            elif coevolved_param == True:
                for i in range(int(self.POPULATION_SIZE / 2)):
                    x1 = []
                    x2 = []
    
                    for w in self.initial_weights_co:
                        j = np.random.randn(*w.shape)
                        x1.append(j)                    
                        x2.append(-j) 
    
                    population.append(x1)               
                    population.append(x2)
                    
            return np.array(population).astype(np.float32)
    View Code
    • _get_rewards_coevolved:
        def _get_rewards_coevolved(self, pool, population, population_coevolved):
            if pool is not None:
                worker_args = []
                for z in range(len(population)):
    
                    heb_coeffs_try1 = []
                    for index, i in enumerate(population[z]):
                        jittered = self.SIGMA * i
                        heb_coeffs_try1.append(self.coeffs[index] + jittered) 
                    heb_coeffs_try = np.array(heb_coeffs_try1).astype(np.float32)
                    
                    coevolved_parameters_try1 = []
                    for index, i in enumerate(population_coevolved[z]):
                        jittered = self.SIGMA * i
                        coevolved_parameters_try1.append(self.initial_weights_co[index] + jittered) 
                    coevolved_parameters_try = np.array(coevolved_parameters_try1).astype(np.float32)
                
                    worker_args.append((self.get_reward, self.hebb_rule, self.environment, self.init_weights, heb_coeffs_try, coevolved_parameters_try))
                    
                rewards = pool.map(worker_process_hebb_coevo, worker_args)
                
            else:
                rewards = []
                for z in range(len(population)):
                    heb_coeffs_try = np.array(self._get_params_try(self.coeffs, population[z]))
                    coevolved_parameters_try = np.array(self._get_params_try(self.initial_weights_co, population_coevolved[z]))
                    rewards.append(self.get_reward(self.hebb_rule, self.environment, self.init_weights, heb_coeffs_try, coevolved_parameters_try))
            
            rewards = np.array(rewards).astype(np.float32)
            return rewards
    View Code
    • _update_coeffs / _update_coevolved_param:
        def _update_coeffs(self, rewards, population):
            rewards = compute_centered_ranks(rewards)
    
            std = rewards.std()
            if std == 0:
                raise ValueError('Variance should not be zero')
                    
            rewards = (rewards - rewards.mean()) / std
                    
            for index, c in enumerate(self.coeffs):
                layer_population = np.array([p[index] for p in population])
                          
                self.update_factor = self.learning_rate / (self.POPULATION_SIZE * self.SIGMA)                
                self.coeffs[index] = c + self.update_factor * np.dot(layer_population.T, rewards).T 
    
            if self.learning_rate > 0.001:
                self.learning_rate *= self.decay
    
            # Decay sigma
            if self.SIGMA > 0.01:
                self.SIGMA *= 0.999
            
        def _update_coevolved_param(self, rewards, population):
            rewards = compute_centered_ranks(rewards)
    
            std = rewards.std()
            if std == 0:
                raise ValueError('Variance should not be zero')
                    
            rewards = (rewards - rewards.mean()) / std
                    
            for index, w in enumerate(self.initial_weights_co):
                layer_population = np.array([p[index] for p in population])
                
                self.update_factor = self.learning_rate / (self.POPULATION_SIZE * self.SIGMA)                
                self.initial_weights_co[index] = w + self.update_factor * np.dot(layer_population.T, rewards).T
    View Code
    • _get_rewards:
        def _get_rewards(self, pool, population):
            if pool is not None:
                worker_args = []
                for p in population:
    
                    heb_coeffs_try1 = []
                    for index, i in enumerate(p):
                        jittered = self.SIGMA * i
                        heb_coeffs_try1.append(self.coeffs[index] + jittered) 
                    heb_coeffs_try = np.array(heb_coeffs_try1).astype(np.float32)
    
                    worker_args.append((self.get_reward, self.hebb_rule, self.environment, self.init_weights, heb_coeffs_try))
                    
                rewards = pool.map(worker_process_hebb, worker_args)
                
            else:
                rewards = []
                for p in population:
    
                    heb_coeffs_try = np.array(self._get_params_try(self.coeffs, p))
                    rewards.append(self.get_reward(self.hebb_rule, self.environment, self.init_weights, heb_coeffs_try))
            
            rewards = np.array(rewards).astype(np.float32)
            return rewards
    View Code
    • get_coeffs:
        def get_coeffs(self):
            return self.coeffs.astype(np.float32)
    • get_coevolved_parameters:
        def get_coevolved_parameters(self):
            return self.initial_weights_co.astype(np.float32)

    HebbianMetaLearning/fitness_functions.py:

    def fitness_hebb(hebb_rule : str, environment : str, init_weights = 'uni', *evolved_parameters: List[np.array]) -> float:
        """
        Evaluate an agent 'evolved_parameters' controlled by a Hebbian network in an environment 'environment' during a lifetime.
        The initial weights are either co-evolved (if 'init_weights' == 'coevolve') along with the Hebbian coefficients or randomly sampled at each episode from the 'init_weights' distribution. 
        Subsequently the weights are updated following the hebbian update mechanism 'hebb_rule'.
        Returns the episodic fitness of the agent.
        """
    
        def weights_init(m):
            if isinstance(m, torch.nn.Linear):
                if init_weights == 'xa_uni':  
                    torch.nn.init.xavier_uniform(m.weight.data, 0.3)
                elif init_weights == 'sparse':  
                    torch.nn.init.sparse_(m.weight.data, 0.8)
                elif init_weights == 'uni':  
                    torch.nn.init.uniform_(m.weight.data, -0.1, 0.1)
                elif init_weights == 'normal':  
                    torch.nn.init.normal_(m.weight.data, 0, 0.024)
                elif init_weights == 'ka_uni':  
                    torch.nn.init.kaiming_uniform_(m.weight.data, 3)
                elif init_weights == 'uni_big':
                    torch.nn.init.uniform_(m.weight.data, -1, 1)
                elif init_weights == 'xa_uni_big':
                    torch.nn.init.xavier_uniform(m.weight.data)
                elif init_weights == 'ones':
                    torch.nn.init.ones_(m.weight.data)
                elif init_weights == 'zeros':
                    torch.nn.init.zeros_(m.weight.data)
                elif init_weights == 'default':
                    pass
                
        # Unpack evolved parameters
        try: 
            hebb_coeffs, initial_weights_co = evolved_parameters
        except: 
            hebb_coeffs = evolved_parameters[0]
    
        # Intial weights co-evolution flag:
        coevolve_init = True if init_weights == 'coevolve' else False
    
        with torch.no_grad():
                        
            # Load environment
            try:
                env = gym.make(environment, verbose = 0)
            except:
                env = gym.make(environment)
                
            # env.render()  # bullet envs
    
            # For environments with several intra-episode lives -eg. Breakout-
            try: 
                if 'FIRE' in env.unwrapped.get_action_meanings():
                    env = FireEpisodicLifeEnv(env)
            except: 
                pass
    
            # Check if selected env is pixel or state-vector 
            if len(env.observation_space.shape) == 3: # Pixel-based environment
                pixel_env = True
                env = w.ResizeObservation(env, 84) # Resize and normilise input   
                env = ScaledFloatFrame(env)
                input_channels = 3
            elif len(env.observation_space.shape) == 1:   
                pixel_env = False
                input_dim = env.observation_space.shape[0]
            elif len(env.observation_space.shape) == 0:   
                pixel_env = False
                input_dim = env.observation_space.n
                
            # Determine action space dimension
            if isinstance(env.action_space, Box):
                action_dim = env.action_space.shape[0]
            elif isinstance(env.action_space, Discrete):
                action_dim = env.action_space.n
            else:
                raise ValueError('Only Box and Discrete action spaces supported')
            
            # Initialise policy network: with CNN layer for pixel envs and simple MLP for state-vector envs
            if pixel_env == True: 
                p = CNN_heb(input_channels, action_dim)      
            else:
                p = MLP_heb(input_dim, action_dim)          
               
            # Initialise weights of the policy network with an specific distribution or with the co-evolved weights
            if coevolve_init:
                nn.utils.vector_to_parameters(torch.tensor(initial_weights_co, dtype=torch.float32), p.parameters())
            else:       
                # Randomly sample initial weights from chosen distribution
                p.apply(weights_init)
                
                 # Load CNN paramters
                if pixel_env:
                    cnn_weights1 = initial_weights_co[:162]
                    cnn_weights2 = initial_weights_co[162:]
                    list(p.parameters())[0].data = torch.tensor(cnn_weights1.reshape((6, 3, 3, 3))).float()
                    list(p.parameters())[1].data = torch.tensor(cnn_weights2.reshape((8, 6, 5, 5))).float()
            
            p = p.float()
            
            # Unpack network's weights
            if pixel_env:
                weightsCNN1, weightsCNN2, weights1_2, weights2_3, weights3_4 = list(p.parameters())
            else:
                weights1_2, weights2_3, weights3_4 = list(p.parameters())
            
            # Convert weights to numpy so we can JIT them with Numba
            weights1_2 = weights1_2.detach().numpy()
            weights2_3 = weights2_3.detach().numpy()
            weights3_4 = weights3_4.detach().numpy()
            
            observation = env.reset() 
            if pixel_env: 
                observation = np.swapaxes(observation, 0, 2) # (3, 84, 84)       
    
            # Burnout phase for the bullet quadruped so it starts off from the floor
            if environment == 'AntBulletEnv-v0':
                action = np.zeros(8)
                for _ in range(40):
                    __ = env.step(action)        
            
            # Normalize weights flag for non-bullet envs
            normalised_weights = False if environment[-12:-6] == 'Bullet' else True
    
            # Inner loop
            neg_count = 0
            rew_ep = 0
            t = 0
            
            while True:
                
                # For obaservation ∈ gym.spaces.Discrete, we one-hot encode the observation
                if isinstance(env.observation_space, Discrete): 
                    observation = (observation == torch.arange(env.observation_space.n)).float()
                
                o0, o1, o2, o3 = p([observation])
                o0 = o0.numpy()
                o1 = o1.numpy()
                o2 = o2.numpy()
                
                # Bounding the action space
                if environment == 'CarRacing-v0':
                    action = np.array([torch.tanh(o3[0]), torch.sigmoid(o3[1]), torch.sigmoid(o3[2])]) 
                    o3 = o3.numpy()
                elif environment[-12:-6] == 'Bullet':
                    o3 = torch.tanh(o3).numpy()
                    action = o3
                else: 
                    if isinstance(env.action_space, Box):
                        action = o3.numpy()                        
                        action = np.clip(action, env.action_space.low, env.action_space.high)  
                    elif isinstance(env.action_space, Discrete):
                        action = np.argmax(o3).numpy()
                    o3 = o3.numpy()
    
                # Environment simulation step
                observation, reward, done, info = env.step(action)  
                if environment == 'AntBulletEnv-v0': 
                    reward = env.unwrapped.rewards[1] # Distance walked
                rew_ep += reward
                
                # env.render('human') # Gym envs
                
                if pixel_env: 
                    observation = np.swapaxes(observation, 0, 2) # (3, 84, 84)
                                           
                # Early stopping conditions
                if environment == 'CarRacing-v0':
                    neg_count = neg_count + 1 if reward < 0.0 else 0
                    if (done or neg_count > 20):
                        break
                elif environment[-12:-6] == 'Bullet':
                    if t > 200:
                        neg_count = neg_count + 1 if reward < 0.0 else 0
                        if (done or neg_count > 30):
                            break
                else:
                    if done:
                        break
                
                t += 1    
                
                #### Episodic/Intra-life hebbian update of the weights
                if hebb_rule == 'A': 
                    weights1_2, weights2_3, weights3_4 = hebbian_update_A(hebb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3)
                elif hebb_rule == 'AD':
                    weights1_2, weights2_3, weights3_4 = hebbian_update_AD(hebb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3)
                elif hebb_rule == 'AD_lr':
                    weights1_2, weights2_3, weights3_4 = hebbian_update_AD_lr(hebb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3)
                elif hebb_rule == 'ABC':
                    weights1_2, weights2_3, weights3_4 = hebbian_update_ABC(hebb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3)
                elif hebb_rule == 'ABC_lr':
                    weights1_2, weights2_3, weights3_4 = hebbian_update_ABC_lr(hebb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3)
                elif hebb_rule == 'ABCD':
                    weights1_2, weights2_3, weights3_4 = hebbian_update_ABCD(hebb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3)
                elif hebb_rule == 'ABCD_lr':
                    weights1_2, weights2_3, weights3_4 = hebbian_update_ABCD_lr_D_in(hebb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3)
                elif hebb_rule == 'ABCD_lr_D_out':
                    weights1_2, weights2_3, weights3_4 = hebbian_update_ABCD_lr_D_out(hebb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3)
                elif hebb_rule == 'ABCD_lr_D_in_and_out':
                    weights1_2, weights2_3, weights3_4 = hebbian_update_ABCD_lr_D_in_and_out(hebb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3)
                else:
                    raise ValueError('The provided Hebbian rule is not valid')
                
                # Normalise weights per layer
                if normalised_weights == True:
                    (a, b, c) = (0, 1, 2) if not pixel_env else (2, 3, 4)
                    list(p.parameters())[a].data /= list(p.parameters())[a].__abs__().max()
                    list(p.parameters())[b].data /= list(p.parameters())[b].__abs__().max()
                    list(p.parameters())[c].data /= list(p.parameters())[c].__abs__().max()
           
            env.close()
    
        return rew_ep
    View Code

    HebbianMetaLearning/policies.py:

    • MLP:
    class MLP_heb(nn.Module):
        "MLP, no bias"
        def __init__(self, input_space, action_space):
            super(MLP_heb, self).__init__()
    
            self.fc1 = nn.Linear(input_space, 128, bias=False)
            self.fc2 = nn.Linear(128, 64, bias=False)
            self.fc3 = nn.Linear(64, action_space, bias=False)
    
        def forward(self, ob):
            state = torch.as_tensor(ob[0]).float().detach()
            
            x1 = torch.tanh(self.fc1(state))   
            x2 = torch.tanh(self.fc2(x1))
            o = self.fc3(x2)  
             
            return state, x1, x2, o
    View Code
    • CNN:
    class CNN_heb(nn.Module):
        "CNN+MLP with n=input_channels frames as input. Non-activated last layer's output"
        def __init__(self, input_channels, action_space_dim):
            super(CNN_heb, self).__init__()
            
            self.conv1 = nn.Conv2d(in_channels=input_channels, out_channels=6, kernel_size=3, stride=1, bias=False)   
            self.pool = nn.MaxPool2d(2, 2)
            self.conv2 = nn.Conv2d(in_channels=6, out_channels=8, kernel_size=5, stride=2, bias=False)
            
            self.linear1 = nn.Linear(648, 128, bias=False) 
            self.linear2 = nn.Linear(128, 64, bias=False)
            self.out = nn.Linear(64, action_space_dim, bias=False)
        
        def forward(self, ob):
            
            state = torch.as_tensor(ob.copy())
            state = state.float()
            
            x1 = self.pool(torch.tanh(self.conv1(state)))
            x2 = self.pool(torch.tanh(self.conv2(x1)))
            
            x3 = x2.view(-1)
            
            x4 = torch.tanh(self.linear1(x3))   
            x5 = torch.tanh(self.linear2(x4))
            
            o = self.out(x5)
    
            return x3, x4, x5, o
    View Code

    HebbianMetaLearning/hebbian_weights_update.py:

    @njit
    def hebbian_update_A(heb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3):
            
            heb_offset = 0
            # Layer 1         
            for i in range(weights1_2.shape[1]): 
                for j in range(weights1_2.shape[0]):  
                    idx = (weights1_2.shape[0] - 1) * i + i + j
                    weights1_2[:, i][j] += heb_coeffs[idx] * o0[i] * o1[j]  
    
            heb_offset = weights1_2.shape[1] * weights1_2.shape[0]
            # Layer 2
            for i in range(weights2_3.shape[1]): 
                for j in range(weights2_3.shape[0]):  
                    idx = heb_offset + (weights2_3.shape[0] - 1) * i + i + j
                    weights2_3[:, i][j] += heb_coeffs[idx] * o1[i] * o2[j] 
        
            heb_offset += weights2_3.shape[1] * weights2_3.shape[0]
            # Layer 3
            for i in range(weights3_4.shape[1]): 
                for j in range(weights3_4.shape[0]):  
                    idx = heb_offset + (weights3_4.shape[0] - 1) * i + i + j 
                    weights3_4[:, i][j] += heb_coeffs[idx] * o2[i] * o3[j] 
    
            return weights1_2, weights2_3, weights3_4
    
    
    @njit
    def hebbian_update_AD(heb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3):
            
            heb_offset = 0
            # Layer 1         
            for i in range(weights1_2.shape[1]): 
                for j in range(weights1_2.shape[0]):  
                    idx = (weights1_2.shape[0] - 1) * i + i + j
                    weights1_2[:, i][j] += heb_coeffs[idx][0] * o0[i] * o1[j] + heb_coeffs[idx][1] 
    
            heb_offset = weights1_2.shape[1] * weights1_2.shape[0]
            # Layer 2
            for i in range(weights2_3.shape[1]): 
                for j in range(weights2_3.shape[0]):  
                    idx = heb_offset + (weights2_3.shape[0] - 1) * i + i + j
                    weights2_3[:, i][j] += heb_coeffs[idx][0] * o1[i] * o2[j] + heb_coeffs[idx][1]  
        
            heb_offset += weights2_3.shape[1] * weights2_3.shape[0]
            # Layer 3
            for i in range(weights3_4.shape[1]): 
                for j in range(weights3_4.shape[0]):  
                    idx = heb_offset + (weights3_4.shape[0] - 1) * i + i + j 
                    weights3_4[:, i][j] += heb_coeffs[idx][0] * o2[i] * o3[j] + heb_coeffs[idx][1] 
    
            return weights1_2, weights2_3, weights3_4
    
        
    @njit
    def hebbian_update_AD_lr(heb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3):
            
            heb_offset = 0
            # Layer 1         
            for i in range(weights1_2.shape[1]): 
                for j in range(weights1_2.shape[0]):  
                    idx = (weights1_2.shape[0] - 1) * i + i + j
                    weights1_2[:, i][j] += (heb_coeffs[idx][0] * o0[i] * o1[j] + heb_coeffs[idx][1]) *  heb_coeffs[idx][2] 
    
            heb_offset = weights1_2.shape[1] * weights1_2.shape[0]
            # Layer 2
            for i in range(weights2_3.shape[1]): 
                for j in range(weights2_3.shape[0]):  
                    idx = heb_offset + (weights2_3.shape[0] - 1) * i + i + j
                    weights2_3[:, i][j] += (heb_coeffs[idx][0] * o1[i] * o2[j] + heb_coeffs[idx][1]) *  heb_coeffs[idx][2]   
        
            heb_offset += weights2_3.shape[1] * weights2_3.shape[0]
            # Layer 3
            for i in range(weights3_4.shape[1]): 
                for j in range(weights3_4.shape[0]):  
                    idx = heb_offset + (weights3_4.shape[0] - 1) * i + i + j 
                    weights3_4[:, i][j] += (heb_coeffs[idx][0] * o2[i] * o3[j] + heb_coeffs[idx][1]) *  heb_coeffs[idx][2] 
    
            return weights1_2, weights2_3, weights3_4
    
    
    @njit
    def hebbian_update_ABC(heb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3):
            
            heb_offset = 0
            # Layer 1         
            for i in range(weights1_2.shape[1]): 
                for j in range(weights1_2.shape[0]):  
                    idx = (weights1_2.shape[0] - 1) * i + i + j
                    weights1_2[:, i][j] += ( heb_coeffs[idx][0] * o0[i] * o1[j]
                                           + heb_coeffs[idx][1] * o0[i] 
                                           + heb_coeffs[idx][2]         * o1[j])  
    
            heb_offset += weights1_2.shape[1] * weights1_2.shape[0]
            # Layer 2
            for i in range(weights2_3.shape[1]): 
                for j in range(weights2_3.shape[0]):  
                    idx = heb_offset + (weights2_3.shape[0] - 1) * i + i + j
                    weights2_3[:, i][j] += ( heb_coeffs[idx][0] * o1[i] * o2[j]
                                           + heb_coeffs[idx][1] * o1[i] 
                                           + heb_coeffs[idx][2]         * o2[j])  
        
            heb_offset += weights2_3.shape[1] * weights2_3.shape[0]
            # Layer 3
            for i in range(weights3_4.shape[1]): 
                for j in range(weights3_4.shape[0]):  
                    idx = heb_offset + (weights3_4.shape[0] - 1) * i + i + j 
                    weights3_4[:, i][j] += ( heb_coeffs[idx][0] * o2[i] * o3[j]
                                           + heb_coeffs[idx][1] * o2[i] 
                                           + heb_coeffs[idx][2]         * o3[j])  
    
            return weights1_2, weights2_3, weights3_4
    
    
    @njit
    def hebbian_update_ABC_lr(heb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3):
            
            heb_offset = 0
            # Layer 1        
            for i in range(weights1_2.shape[1]): 
                for j in range(weights1_2.shape[0]):  
                    idx = (weights1_2.shape[0] - 1) * i + i + j
                    weights1_2[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o0[i] * o1[j]
                                                                + heb_coeffs[idx][1] * o0[i] 
                                                                + heb_coeffs[idx][2]         * o1[j])
    
            heb_offset += weights1_2.shape[1] * weights1_2.shape[0]
            # Layer 2
            for i in range(weights2_3.shape[1]): 
                for j in range(weights2_3.shape[0]):  
                    idx = heb_offset + (weights2_3.shape[0] - 1) * i + i + j
                    weights2_3[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o1[i] * o2[j]
                                                                + heb_coeffs[idx][1] * o1[i] 
                                                                + heb_coeffs[idx][2]         * o2[j])  
        
            heb_offset += weights2_3.shape[1] * weights2_3.shape[0]
            # Layer 3
            for i in range(weights3_4.shape[1]): 
                for j in range(weights3_4.shape[0]):  
                    idx = heb_offset + (weights3_4.shape[0]-1) * i + i + j 
                    weights3_4[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o2[i] * o3[j]
                                                                + heb_coeffs[idx][1] * o2[i] 
                                                                + heb_coeffs[idx][2]         * o3[j])  
    
            return weights1_2, weights2_3, weights3_4
    
    
    @njit
    def hebbian_update_ABCD(heb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3):
            
            heb_offset = 0
            # Layer 1        
            for i in range(weights1_2.shape[1]): 
                for j in range(weights1_2.shape[0]):  
                    idx = (weights1_2.shape[0] - 1) * i + i + j
                    weights1_2[:, i][j] += heb_coeffs[idx][3] + ( heb_coeffs[idx][0] * o0[i] * o1[j]
                                                                + heb_coeffs[idx][1] * o0[i] 
                                                                + heb_coeffs[idx][2]         * o1[j])
    
            heb_offset += weights1_2.shape[1] * weights1_2.shape[0]
            # Layer 2
            for i in range(weights2_3.shape[1]): 
                for j in range(weights2_3.shape[0]):  
                    idx = heb_offset + (weights2_3.shape[0] - 1) * i + i + j
                    weights2_3[:, i][j] += heb_coeffs[idx][3] + ( heb_coeffs[idx][0] * o1[i] * o2[j]
                                                                + heb_coeffs[idx][1] * o1[i] 
                                                                + heb_coeffs[idx][2]         * o2[j])  
        
            heb_offset += weights2_3.shape[1] * weights2_3.shape[0]
            # Layer 3
            for i in range(weights3_4.shape[1]): 
                for j in range(weights3_4.shape[0]):  
                    idx = heb_offset + (weights3_4.shape[0] - 1) * i + i + j 
                    weights3_4[:, i][j] += heb_coeffs[idx][3] + ( heb_coeffs[idx][0] * o2[i] * o3[j]
                                                                + heb_coeffs[idx][1] * o2[i] 
                                                                + heb_coeffs[idx][2]         * o3[j])  
                    
            return weights1_2, weights2_3, weights3_4
        
        
    @njit    
    def hebbian_update_ABCD_lr_D_in(heb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3):
           
            heb_offset = 0
            ## Layer 1         
            for i in range(weights1_2.shape[1]): 
                for j in range(weights1_2.shape[0]): 
                    idx = (weights1_2.shape[0] - 1) * i + i + j
                    weights1_2[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o0[i] * o1[j]
                                                                + heb_coeffs[idx][1] * o0[i] 
                                                                + heb_coeffs[idx][2]         * o1[j]  + heb_coeffs[idx][4])
    
            heb_offset += weights1_2.shape[1] * weights1_2.shape[0]
            # Layer 2
            for i in range(weights2_3.shape[1]): 
                for j in range(weights2_3.shape[0]):
                    idx = heb_offset + (weights2_3.shape[0] - 1) * i + i + j
                    weights2_3[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o1[i] * o2[j]
                                                                + heb_coeffs[idx][1] * o1[i] 
                                                                + heb_coeffs[idx][2]         * o2[j]  + heb_coeffs[idx][4])
    
            heb_offset += weights2_3.shape[1] * weights2_3.shape[0]
            # Layer 3
            for i in range(weights3_4.shape[1]): 
                for j in range(weights3_4.shape[0]): 
                    idx = heb_offset + (weights3_4.shape[0] - 1) * i + i + j 
                    weights3_4[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o2[i] * o3[j]
                                                                + heb_coeffs[idx][1] * o2[i] 
                                                                + heb_coeffs[idx][2]         * o3[j]  + heb_coeffs[idx][4])
                    
            return weights1_2, weights2_3, weights3_4
        
        
    @njit
    def hebbian_update_ABCD_lr_D_out(heb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3):
           
            heb_offset = 0
            # Layer 1         
            for i in range(weights1_2.shape[1]): 
                for j in range(weights1_2.shape[0]):  
                    idx = (weights1_2.shape[0] - 1) * i + i + j
                    weights1_2[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o0[i] * o1[j]
                                                                + heb_coeffs[idx][1] * o0[i] 
                                                                + heb_coeffs[idx][2]         * o1[j])  + heb_coeffs[idx][4]
    
            heb_offset += weights1_2.shape[1] * weights1_2.shape[0]
            # Layer 2
            for i in range(weights2_3.shape[1]): 
                for j in range(weights2_3.shape[0]):  
                    idx = heb_offset + (weights2_3.shape[0] - 1) * i + i + j
                    weights2_3[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o1[i] * o2[j]
                                                                + heb_coeffs[idx][1] * o1[i] 
                                                                + heb_coeffs[idx][2]         * o2[j])  + heb_coeffs[idx][4]
        
            heb_offset += weights2_3.shape[1] * weights2_3.shape[0]
            # Layer 3
            for i in range(weights3_4.shape[1]): 
                for j in range(weights3_4.shape[0]):  
                    idx = heb_offset + (weights3_4.shape[0] - 1) * i + i + j 
                    weights3_4[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o2[i] * o3[j]
                                                                + heb_coeffs[idx][1] * o2[i] 
                                                                + heb_coeffs[idx][2]         * o3[j])  + heb_coeffs[idx][4]
    
            return weights1_2, weights2_3, weights3_4
    
    
    @njit
    def hebbian_update_ABCD_lr_D_in_and_out(heb_coeffs, weights1_2, weights2_3, weights3_4, o0, o1, o2, o3):
           
            heb_offset = 0
            # Layer 1         
            for i in range(weights1_2.shape[1]): 
                for j in range(weights1_2.shape[0]):  
                    idx = (weights1_2.shape[0] - 1) * i + i + j
                    weights1_2[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o0[i] * o1[j]
                                                                + heb_coeffs[idx][1] * o0[i] 
                                                                + heb_coeffs[idx][2]         * o1[j]  + heb_coeffs[idx][4]) + heb_coeffs[idx][5]
    
            heb_offset += weights1_2.shape[1] * weights1_2.shape[0]
            # Layer 2
            for i in range(weights2_3.shape[1]): 
                for j in range(weights2_3.shape[0]):  
                    idx = heb_offset + (weights2_3.shape[0] - 1) * i + i + j
                    weights2_3[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o1[i] * o2[j]
                                                                + heb_coeffs[idx][1] * o1[i] 
                                                                + heb_coeffs[idx][2]         * o2[j]  + heb_coeffs[idx][4]) + heb_coeffs[idx][5]
        
            heb_offset += weights2_3.shape[1] * weights2_3.shape[0]
            # Layer 3
            for i in range(weights3_4.shape[1]): 
                for j in range(weights3_4.shape[0]):  
                    idx = heb_offset + (weights3_4.shape[0] - 1) * i + i + j 
                    weights3_4[:, i][j] += heb_coeffs[idx][3] * ( heb_coeffs[idx][0] * o2[i] * o3[j]
                                                                + heb_coeffs[idx][1] * o2[i] 
                                                                + heb_coeffs[idx][2]         * o3[j]  + heb_coeffs[idx][4]) + heb_coeffs[idx][5]
    
            return weights1_2, weights2_3, weights3_4
    View Code
  • 相关阅读:
    C# 窗体间传值方法大汇总(转)
    STM32 配置PC13~PC15
    STM32的USART发送数据时如何使用TXE和TC标志
    STM32_NVIC寄存器详解
    protel99se 问题汇总(不定期更新)
    STM32串口IAP实验笔记
    Keil MDK下如何设置非零初始化变量(复位后变量值不丢失)
    STM32定时器配置(TIM1-TIM8)高级定时器+普通定时器,定时计数模式下总结
    帮助类-AD域操作
    GitHub贡献第一的公司是谁?微软开源软件列表
  • 原文地址:https://www.cnblogs.com/lucifer1997/p/14681645.html
Copyright © 2011-2022 走看看