zoukankan      html  css  js  c++  java
  • 决策树

    tree.py

    from math import log
    import operator
    
    def calcShannonEnt(dataSet):
        numEntries = len(dataSet)
        labelCounts = {}
        for featVec in dataSet:
            currentLabel = featVec[-1]
            if currentLabel not in labelCounts.keys():
                labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
        shannonEnt = 0.0
        for key in labelCounts:
            prob = float(labelCounts[key]) / numEntries
            shannonEnt -= prob * log(prob, 2)
        return shannonEnt
    
    def createDataSet():
        dataSet = [
            [1, 1, 'yes'],
            [1, 1, 'yes'],
            [1, 0, 'no'],
            [0, 1, 'no'],
            [0, 1, 'no']
        ]
        labels = ['no surfacing', 'flippers']
        return dataSet, labels
    
    
    def splitDataSet(dataSet, axis, value):
        retDataSet = []
        for featVec in dataSet:
            if featVec[axis] == value:
                reducedFeatVec = featVec[ : axis]
                reducedFeatVec.extend(featVec[axis + 1 : ])
                retDataSet.append(reducedFeatVec)
        return retDataSet
    
    def step1():
        myDat, labels = createDataSet()
        print myDat
        shannonRes = calcShannonEnt(myDat)
        print shannonRes
    
    
    def step2():
        a = [1, 2, 3]
        b = [4, 5, 6]
        a.append(b)
        print a
        a = [1, 2, 3]
        a.extend(b)
        print a
    
    
    def step3():
        myDat, labels = createDataSet()
        print splitDataSet(myDat, 0, 1)
        print splitDataSet(myDat, 0, 0)
    
    def chooseBestFeatToSplit(dataSet):
        numFeatures = len(dataSet[0]) - 1
        baseEntropy = calcShannonEnt(dataSet)
        bestInfoGain = 0.0; bestFeature =-1
        for i in range(numFeatures):
            featList = [example[i] for example in dataSet]
            uniqueVals = set(featList)
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)
                prob = len(subDataSet) / float(len(dataSet))
                newEntropy += prob * calcShannonEnt(subDataSet)
            infoGain = baseEntropy - newEntropy
            if(infoGain > bestInfoGain):
                bestInfoGain = infoGain
                bestFeature = i
        return bestFeature
    
    
    def step4():
        myDat, labels = createDataSet()
        res = chooseBestFeatToSplit(myDat)
        print res
        print myDat
    
    
    def majorityCnt(classList):
        classCount = {}
        for vote in classList:
            if vote not in classCount.keys():
                classCount[vote] = 0
            classCount[vote] += 1
        sortedClassCount = sorted(classCount.iteritems(), key = operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]
    
    
    def createTree(dataSet, labels):
        classList = [example[-1] for example in dataSet]
        if classList.count(classList[0]) == len(classList):
            return classList[0]
        if len(dataSet[0]) == 1:
            return majorityCnt(classList)
        bestFeat = chooseBestFeatToSplit(dataSet)
        bestFeatLabel = labels[bestFeat]
        myTree = {bestFeatLabel:{}}
        del(labels[bestFeat])
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:
            subLabels = labels[:]
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
        return myTree
    
    def step5():
        myDat, labels = createDataSet()
        print myDat
        print labels
        myTree = createTree(myDat, labels)
        print myTree
    
    
    if __name__ == '__main__':
        step5()
  • 相关阅读:
    Sort
    MyOD
    Linux C语言编程基础(必做)
    团队作业(一):团队展示
    2.3.1测试
    《Unix/Linux系统编程》第四章学习笔记
    课堂测试2
    课堂测试
    第三章 Unix/Linux进程管理学习笔记
    团队作业(二):需求分析
  • 原文地址:https://www.cnblogs.com/luckygxf/p/9241645.html
Copyright © 2011-2022 走看看