zoukankan      html  css  js  c++  java
  • 数学--数论--(逆元)扩展欧几里求解+证明

    欧几里得与扩展欧几里得

    先解释一下符号:

    ABmodCACBCA/CB/CA≡B (mod C)符号代表A模C与B模C相等,即A/C与B/C同余。

    invaainv(a)代表a的逆元

    定义:
    bb11(modc)b1bcb ∗b^{-1}≡1 (mod c) ,那么称b^-1^为b模c的乘法逆元。
    Invb=b1则Inv(b)=b^{-1}

    定理:

    ab(modc)=ainv(b)(modc)inv(b)bcfrac{a}{b}pmod{c}=a*inv(b)pmod{c}成立的条件是inv(b)存,在即b与c互质。

    用途:

    乘法逆元可以用来求解部分除法的取模问题(分母是一个整数,并且与被取模数互质)
    bb11(modc)b ∗b^{-1}≡1 (mod c) 使bx+cy=1xb可以转化为使用拓展欧几里得求解bx+cy=1的解, 求解x即为b的逆元
    证明:
    学数论不证明,是不能锻炼逻辑思维能力的。

    ainv(a)1(modc)ainv(a)=kc+1ainv(a)kc=1K=kainv(a)+Kc=1因为 a*inv(a)≡1(modc)\ 所以设 a*inv(a)=k*c+1\ 移项得 a*inv(a)-k*c=1\ 取K=-k得 a*inv(a)+K*c=1
    原结论得证

    小技巧:
    但是这里的inv(a)可能解除负值,我们可以再加上c来保证他是正整数

  • 相关阅读:
    [NOI2010]航空管制
    [POI2008]POD-Subdivision of Kingdom
    CF17C Balance
    [HAOI2007]理想的正方形
    [Code+#1]大吉大利,晚上吃鸡!
    HDU 3371
    hdu1102
    最短路算法、应用、模板总结
    csu十月月赛 并查集+分组背包
    csu 十月月赛 最短路+最小费用
  • 原文地址:https://www.cnblogs.com/lunatic-talent/p/12798557.html
Copyright © 2011-2022 走看看