1486:黑暗城堡
【题目描述】
知道黑暗城堡有 N 个房间,M 条可以制造的双向通道,以及每条通道的长度。
城堡是树形的并且满足下面的条件:
设 Di为如果所有的通道都被修建,第 i 号房间与第 1 号房间的最短路径长度;
而 Si 为实际修建的树形城堡中第 i 号房间与第 1 号房间的路径长度;
要求对于所有整数 i(1≤i≤N),有 Si=Di 成立。
你想知道有多少种不同的城堡修建方案。当然,你只需要输出答案对 231−1 取模之后的结果就行了。
【输入】
第一行为两个由空格隔开的整数 N,M;
第二行到第 M+1 行为 3 个由空格隔开的整数 x,y,l:表示 x 号房间与 y 号房间之间的通道长度为 l。
【输出】
一个整数:不同的城堡修建方案数对 231−1 取模之后的结果。
【输入样例】
4 6
1 2 1
1 3 2
1 4 3
2 3 1
2 4 2
3 4 1
【输出样例】
6
【提示】
样例说明
一共有 4 个房间,6 条道路,其中 1 号和 2 号,1 号和 3 号,1 号和 4 号,2 号和 3 号,2 号和 4 号,3 号和 4 号房间之间的通道长度分别为 1,2,3,1,2,1。
而不同的城堡修建方案数对 231−1 取模之后的结果为 6。
数据范围:
对于全部数据,1≤N≤1000,1≤M≤N(N−1)2,1≤l≤200。
#include<iostream>
#include<cstring>
#include<sstream>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
#define read(x) scanf("%lld",&x)
#define Read(x,y) scanf("%lld%lld",&x,&y)
#define gc(x) scanf(" %c",&x);
#define mmt(x,y) memset(x,y,sizeof x)
#define write(x) printf("%d
",x)
#define INF 0x3f3f3f3f
#define ll long long
#define mod ((1LL<<31) - 1LL)
const ll N = 1005;
const ll M = 1e6;
ll d[N];
bool vis[N];ll id[N];
ll head[N],tot;
ll w[N][N];
struct Edge
{
ll next;
ll to;
ll dis;
}edge[M*2];
inline void add(ll from,ll to,ll dis)
{
edge[++tot].next = head[from];
edge[tot].to = to;
edge[tot].dis = dis;
head[from] = tot;
}
void spfa()
{
mmt(d,0x3f);
mmt(vis,0);
d[1] = 0;
queue<ll> Q;
Q.push(1);
vis[1] = 1;
while(Q.size())
{
ll x= Q.front();
Q.pop();
vis[x] = 0;
for(ll i = head[x];~i;i = edge[i].next)
{
ll y = edge[i].to;
ll dis = edge[i].dis;
if(d[y] > d[x] + dis){
d[y] = d[x ]+dis;
if(!vis[y]){
vis[y] = 1;
Q.push(y);
}
}
}
}
}
bool cmp(ll a,ll b)
{
return d[a] < d[b];
}
void init()
{
mmt(head,-1);
tot = 0;
for(int i = 1;i <=1000;++i){
for(int j = 1;j <= 1000;++j){
w[i][j] = INF;
}
w[i][i] = 0;
}
}
int main()
{
init();
ll n,m;
ll f,t,dis;
Read(n,m);
for(ll i = 1;i <= m;++i){
Read(f,t);read(dis);
if(w[f][t] > dis) w[f][t] = w[t][f] = dis;
add(f,t,dis);
add(t,f,dis);
}
spfa();//先跑一次最短路,求出d数组 dijkstra也可以
for(ll i = 1;i <= n;++i) id[i] = i;
sort(id +1 ,id + n+1,cmp);//按d[ ]从小到大排序
ll ans = 1;
ll cnt = 0;
for(ll i = 2;i <= n;++i){
cnt = 0;
for(ll j = 1;j <= i-1;++j){//模拟最短路径树形成的过程,并按乘法原理统计方案数,
if(d[id[i]] == d[id[j]] + w[id[j]][id[i]]) cnt ++;
}
ans = ans * cnt %mod;
}
cout<<ans<<endl;
}