zoukankan      html  css  js  c++  java
  • Retinex系列之McCann99 Retinex 分类: 图像处理 Matlab 2014-12-03 11:27 585人阅读 评论(0) 收藏

    一、McCann99 Retinex

    McCann99利用金字塔模型建立对图像的多分辨率描述,自顶向下逐层迭代,提高增强效率。对输入图像的长宽有

    严格的限制,要求可表示成 ,且 

    上述限制来源于金字塔模型的结构要求,由于要对输入图像进行下采样,金字塔中上层低分辨率图像的宽分别为下

    层高分辨率图像的1/2,顶层(第n层)大小为,底层(第0层)为原图像。金字塔结构如下图所示。

    McCann99算法对输入图像的尺寸要求过于严格,以至于大部分图像不能直接用此算法进行增强,后续有很多改进

    措施,此处暂不考虑。

    算法从顶层开始,将每个像素与其8领域像素比较,估计每个像素点的亮度值(lightness),比较的迭代次数nIterator

    由用户决定,每次迭代有四步操作:比例(ratio)、乘积(product)、重置(reset)、平均(average)。随着迭代次数的增

    大,像素受到邻域的影响范围就会扩大。每层计算结束后对该层所得图像进行插值运算,使其尺寸与下一层相同,并

    将插值结果作为下一层处理的初始值。对下一层进行相同操作,这样自顶向下直至金字塔底层得到最终增强结果。

    对每金字塔每一层:设OP为上一步迭代的乘积;NP为当前迭代的乘积;IP为中间乘积结果;R为该层输入图像;符号

    *表示重置操作。其中对于每个像素执行的四步操作使用和Frankle-McCann相同的公式:

    变量初始化:

    金字塔层数由原始图像尺寸决定,大小为 ,层数为n+1;

    OP初始尺寸为,各像素值一般设为原始图像中的最大值;

    R:第k层输入图为像原始图像的下采样,大小为

    迭代次数nIterator一般设为4;


    图像金字塔模型


     二、Matlab实现

    function Test()
    ImOriginal=imread('fig5.tif');
    [m,n,z] = size(ImOriginal);
    ImOut = zeros(m,n,z);
    for i = 1:z
        ImChannel = log(double(ImOriginal(:,:,i))+eps);
        ImOut(:,:,i)=retinex_mccann99(ImChannel,4); 
        ImOut(:,:,i)=exp(ImOut(:,:,i));
        a=min(min(ImOut(:,:,i)));
        b=max(max(ImOut(:,:,i)));
        ImOut(:,:,i)=((ImOut(:,:,i)-a)/(b-a))*255;     
    end
    ImOut=uint8(ImOut);
    figure(1);
    imshow(ImOriginal);
    figure(2);
    imshow(ImOut);
    
    function Retinex = retinex_mccann99(L, nIterations)
    % INPUT:  L           - logarithmic single-channel intensity image to be processed
    %         nIterations - number of Retinex iterations
    %
    % OUTPUT: Retinex     - raw Retinex output
    global OPE RRE Maximum
    [nrows ncols] = size(L);                             % get size of the input image
    nLayers = ComputeLayers(nrows, ncols);               % compute the number of pyramid layers
    nrows = nrows/(2^nLayers);                           % size of image to process for layer 0
    ncols = ncols/(2^nLayers);
    if (nrows*ncols > 25)                                % not processing images of area > 25
      error('invalid image size.')                       % at first layer
    end
    Maximum = max(L(:));                                 % maximum color value in the image
    OP = Maximum*ones([nrows ncols]);                    % initialize Old Product
    for layer = 0:nLayers
       RR = ImageDownResolution(L, 2^(nLayers-layer));   % reduce input to required layer size
       OPE = [zeros(nrows,1) OP zeros(nrows,1)];         % pad OP with additional columns
       OPE = [zeros(1,ncols+2); OPE; zeros(1,ncols+2)];  % and rows
       RRE = [RR(:,1) RR RR(:,end)];                     % pad RR with additional columns
       RRE = [RRE(1,:); RRE; RRE(end,:)];                % and rows
       
       for iter = 1:nIterations
         CompareWithNeighbor(-1, 0);                     % North
         CompareWithNeighbor(-1, 1);                     % North-East
         CompareWithNeighbor(0, 1);                      % East
         CompareWithNeighbor(1, 1);                      % South-East
         CompareWithNeighbor(1, 0);                      % South
         CompareWithNeighbor(1, -1);                     % South-West
         CompareWithNeighbor(0, -1);                     % West
         CompareWithNeighbor(-1, -1);                    % North-West
       end
       
       NP = OPE(2:(end-1), 2:(end-1));
       OP = NP(:, [fix(1:0.5:ncols) ncols]);             %%% these two lines are equivalent with 
       OP = OP([fix(1:0.5:nrows) nrows], :);             %%% OP = imresize(NP, 2) if using Image
       nrows = 2*nrows; ncols = 2*ncols;                 % Processing Toolbox in MATLAB
    end
    Retinex = NP;
    
    %将当前像素与八邻域比较
    function CompareWithNeighbor(dif_row, dif_col)
    global OPE RRE Maximum
    % Ratio-Product operation
    IP = OPE(2+dif_row:(end-1+dif_row), 2+dif_col:(end-1+dif_col)) + ...
         RRE(2:(end-1),2:(end-1)) - RRE(2+dif_row:(end-1+dif_row), 2+dif_col:(end-1+dif_col));     
    IP(IP > Maximum) = Maximum;                          % The Reset step
    
    % ignore the results obtained in the rows or columns for which the neighbors are undefined
    %因OPE边界处填充了0,故IP对应的边界处结果无意义,直接置成原值
    if (dif_col == -1) IP(:,1) = OPE(2:(end-1),2); end
    if (dif_col == +1) IP(:,end) = OPE(2:(end-1),end-1); end
    if (dif_row == -1) IP(1,:) = OPE(2, 2:(end-1)); end
    if (dif_row == +1) IP(end,:) = OPE(end-1, 2:(end-1)); end
    
    NP = (OPE(2:(end-1),2:(end-1)) + IP)/2;              % The Averaging operation
    OPE(2:(end-1), 2:(end-1)) = NP;
    
    %power:nrows,ncols的最大公约数且是2的整数次方
    function Layers = ComputeLayers(nrows, ncols)
    power = 2^fix(log2(gcd(nrows, ncols)));              % start from the Greatest Common Divisor
    while(power > 1 && ((rem(nrows, power) ~= 0) || (rem(ncols, power) ~= 0)))
       power = power/2;                                  % and find the greatest common divisor
    end                                                  % that is a power of 2
    Layers = log2(power);
    
    %下采样,将blocksize*blocksize区域映射为一个像素点
    function Result = ImageDownResolution(A, blocksize)
    [rows, cols] = size(A);                              % the input matrix A is viewed as
    result_rows = rows/blocksize;                        % a series of square blocks
    result_cols = cols/blocksize;                        % of size = blocksize
    Result = zeros([result_rows result_cols]);
    for crt_row = 1:result_rows                          % then each pixel is computed as
       for crt_col = 1:result_cols                       % the average of each such block
          Result(crt_row, crt_col) = mean2(A(1+(crt_row-1)*blocksize:crt_row*blocksize, ...
                                           1+(crt_col-1)*blocksize:crt_col*blocksize));
       end
    end
    


    测试结果:

    输入

    输出

    注:输出时只是简单的进行线性拉伸,使得灰度值落在[0-255],没有使用更好调整方法。

    参考:

    http://www.cnblogs.com/sleepwalker/p/3676600.html

    [1] J.J. McCann, “LessonsLearned from Mondrians Applied to Real Images and Color Gamuts”, Proc.IS&T/SID Seventh Color Imaging Conference, pp. 1-8, 1999.

    [2] Brian Funt, FlorianCiurea, and John McCann "Retinex in Matlab," Proceedings of the IS&T/SIDEighth Color Imaging Conference: Color Science, Systems and Applications, 2000.

    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    算法
    nginx配置https
    IE中JS跳转丢失referer的问题
    js 调用字符串类型的 js语句
    移动端iOS中input聚焦不灵敏
    上传图片转换格式为base64并预览
    转:手机号脱敏
    转:Lodash之throttle(节流)与debounce(防抖)总结
    转:tinyMCE中图片的自定义上传
    chrome input 输入框去掉黄色
  • 原文地址:https://www.cnblogs.com/luo-peng/p/4646232.html
Copyright © 2011-2022 走看看