/*
难度最低的解法
钦定一个边集S作为前S小如果这个边集假如第|S|小这条边时加入时S恰好联通, 那么我们就能够算出他的贡献了
恰好联通 = 加了这条边之前不连通方案数 - 加了这条边之后不连通方案数
然后考虑dp联通不连通的状态
f[S][i], g[S][i] 分别表示点集为S用了i条边, 不联通和连通的方案数
显然 F[S][i] + g[S][i] = inom{bian_S}{i}
然后就可以子集dp转移了F[S][i] = sum{T subseteq S } sum_{j = 0}{bian_T} g[T][j] * inom{S - T, i - j}
当然是要固定点防止算重的
最后统计答案就是 frac{1}{m + 1} sum_{k = 1}^{m} frac{f[U][k]}{inom{m}{k}}
*/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#include<cmath>
#define ll long long
#define M 10
#define mmp make_pair
using namespace std;
int read() {
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
double f[1 << 10][51], g[1 << 10][51], c[51][51], ans;
int n, m, bian[1 << 10], note[51][51];
int main() {
n = read(), m = read();
c[0][0] = 1;
for(int i = 1; i <= m; i++) {
c[i][0] = 1;
for(int j = 1; j <= m; j++) {
c[i][j] = c[i - 1][j] + c[i - 1][j - 1];
}
}
for(int i = 1; i <= m; i++) {
int vi = read() - 1, vj = read() - 1;
note[vi][vj] = note[vj][vi] = 1;
}
for(int s = 1; s < (1 << n); s++) {
int x = -1, tot = 0;
for(int i = 0; i < n; i++) {
if((s & (1 << i)) == 0) continue;
if(x == -1) x = i;
else {
if(note[x][i]) tot++;
}
}
bian[s] = bian[s - (1 << x)] + tot;
}
for(int s = 1; s < (1 << n); s++) {
for(int i = 0; i <= bian[s]; i++) {
for(int t = s; t; t = (t - 1) & s) {
if(t & (s & -s)) {
for(int j = 0; j <= min(i, bian[t]); j++) {
f[s][i] += g[t][j] * c[bian[s - t]][i - j];
}
}
}
g[s][i] = c[bian[s]][i] - f[s][i];
}
}
for(int i = 0; i <= m; i++) ans += f[(1 << n) - 1][i] / c[m][i];
ans /= 1.0 * (m + 1);
printf("%.6lf
", ans);
return 0;
}