http://acm.hdu.edu.cn/showproblem.php?pid=1402
给出两个高精度正整数,求它们的积,最长的数长度不大于5e4。
FFT裸题,将每个数位看做是多项式的系数即可。
我们最后就是要求出两个多项式相乘的系数。
#include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> using namespace std; typedef double dl; const dl pi=acos(-1.0); const int N=2e5+10; struct complex{//定义复数 dl x,y; complex(dl xx=0.0,dl yy=0.0){ x=xx;y=yy; } complex operator +(const complex &b)const{ return complex(x+b.x,y+b.y); } complex operator -(const complex &b)const{ return complex(x-b.x,y-b.y); } complex operator *(const complex &b)const{ return complex(x*b.x-y*b.y,x*b.y+y*b.x); } }; void FFT(complex a[],int n,int on){ for(int i=1,j=n>>1;i<n-1;i++){ if(i<j)swap(a[i],a[j]); int k=n>>1; while(j>=k){j-=k;k>>=1;} if(j<k)j+=k; } for(int i=2;i<=n;i<<=1){ complex res(cos(-on*2*pi/i),sin(-on*2*pi/i)); for(int j=0;j<n;j+=i){ complex w(1,0); for(int k=j;k<j+i/2;k++){ complex u=a[k],t=w*a[k+i/2]; a[k]=u+t; a[k+i/2]=u-t; w=w*res; } } } if(on==-1) for(int i=0;i<n;i++)a[i].x/=n; } char a[N],b[N]; complex x[N],y[N]; int ans[N]; int main(){ while(cin>>a>>b){ int len1=strlen(a),len2=strlen(b); int n=1; while(n<len1*2||n<len2*2)n<<=1; for(int i=0;i<len1;i++)x[i]=complex(a[len1-1-i]-'0',0); for(int i=len1;i<n;i++)x[i]=complex(0,0); for(int i=0;i<len2;i++)y[i]=complex(b[len2-1-i]-'0',0); for(int i=len2;i<n;i++)y[i]=complex(0,0); FFT(x,n,1);FFT(y,n,1); for(int i=0;i<n;i++)x[i]=x[i]*y[i]; FFT(x,n,-1); for(int i=0;i<n;i++)ans[i]=(int)(x[i].x+0.5); for(int i=0;i<n;i++){ ans[i+1]+=ans[i]/10; ans[i]%=10; } n=len1+len2-1; while(ans[n]<=0&&n>0)n--; for(int i=n;i>=0;i--)printf("%d",ans[i]); puts(""); } return 0; }
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++