# A dictionary of movie critics and their ratings of a small # set of movies from math import sqrt critics = { 'Lisa Rose': { 'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck':3.0, 'Superman Returens':3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0 }, 'Gene Seymour': { 'Lady in the Water':3.0, 'Snakes on a Plane':3.5, 'Just My Luck':1.5, 'Superman Returns':5.0, 'The Night Listener':3.0, 'You, Me and Dupree':3.5 }, 'Michael Phillips': { 'Lady in the Water':2.5, 'Snake on a Pleane':3.0, 'Superman Returns':35, 'The Night Listener':4.0 }, 'Claudia Puig': { 'Snakes on a Plane':3.5, 'Just My Luck':3.0, 'The Night Listener':4.5, 'Superman Returns':4.0, 'You, Me and Dupree':2.5 }, 'Mick LaSalle': { 'Lady in the water':3.0, 'Snakes on a Plane':4.0, 'Just My Luck':2.0, 'Superman Returns':3.0, 'The Night Listener':3.0, 'You, Me and Dupree':2.0 }, 'Jack Matthews': { 'Lady in the Water': 3.0, 'Snake on a Plane': 4.0, 'The Night Listener':3.0, 'Superman Returns':5.0, 'You, Me and Dupree':3.5}, 'Toby': {'Snake on a Plane': 4.5, 'You, Me and Dupree':1.0, 'Superman Returns':4.0 } } #Returns a distance-based similarity score for person1 and person2 def sim_distance( prefs, person1, person2 ): #Get the list of shared_items si = {} for item in prefs[person1]: if item in prefs[person2]: si[item] = 1 #if they have no ratings in common, return 0 if len(si) == 0: return 0 #Add up the squares of all the differences sum_of_squares = sum( [pow(prefs[person1][item]-prefs[person2][item], 2) for item in prefs[person1] if item in prefs[person2]]) return 1/( 1 + sum_of_squares ) if __name__ == "__main__": #print critics['Lisa Rose']['Lady in the Water'] print sim_distance( critics, 'Lisa Rose', 'Gene Seymour')