import pandas,numpy,os,nltk,langid from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB #preprocess用于将一个文本文档进行切词,并以字符串形式输出切词结果 def preprocess(path_name): text_with_spaces="" textfile=open(path_name,"r",encoding="utf-8").read() textcut=nltk.word_tokenize(textfile) for word in textcut: text_with_spaces+=word+" " return text_with_spaces #loadtrainset用于将某一文件夹下的所有文本文档批量切词后,载入为训练数据集;返回训练集和每一个文本(元组)对应的类标号。 def loadtrainset(path,classtag): allfiles=os.listdir(path) processed_textset=[] allclasstags=[] for thisfile in allfiles: path_name=path+"/"+thisfile processed_textset.append(preprocess(path_name)) allclasstags.append(classtag) return processed_textset,allclasstags def train(): processed_textdata1,class1=loadtrainset("data/CS", "CS") processed_textdata2,class2=loadtrainset("data/CL", "CL") integrated_train_data=processed_textdata1+processed_textdata2 classtags_list=class1+class2 count_vector = CountVectorizer() #该类会将文本中的词语转换为词频矩阵,矩阵元素a[i][j] 表示j词在i类文本下的词频 vector_matrix = count_vector.fit_transform(integrated_train_data) #tfidf度量模型 train_tfidf = TfidfTransformer(use_idf=False).fit_transform(vector_matrix) #将词频矩阵转化为权重矩阵,每一个特征值就是一个单词的TF-IDF值 #调用MultinomialNB分类器进行训练 clf = MultinomialNB().fit(train_tfidf,classtags_list)# return count_vector,clf def isCyber(content): #[CL,CS] content_lang = langid.classify(content)[0] if content_lang == 'en': text_with_spaces="" textcut=nltk.word_tokenize(content) for word in textcut: text_with_spaces+=word+" " testset=[] testset.append(text_with_spaces) count_vector,clf = train() new_count_vector = count_vector.transform(testset) new_tfidf= TfidfTransformer(use_idf=False).fit_transform(new_count_vector) predict_result = clf.predict(new_tfidf) #预测结果 print(predict_result) print( clf.predict_proba(new_tfidf) ) print( clf.predict_proba(new_tfidf)[0][1] ) if predict_result[0] == 'CS': if clf.predict_proba(new_tfidf)[0][1] >= 0.7: return True return False if content_lang == 'zh': print() if __name__=='__main__': content = '''These pandemic days flow by in waves of exhilaration and stillness. Who knew a trip to the grocery store could be so exciting? Bread-and-milk runs have become surgical raids: Sterilize the grocery cart with a disinfectant wipe, scout out the TP aisle, exchange sideways glances with the could-be infected, grab the essentials, and get the hell out of there. Later, as another news alert interrupts the Netflix stream, the group text explodes: “This is crazy,” everyone says from their respective couches. Few hasten to add that crazy is also sort of fun.''' isCyber(content)