$f命题:$讨论$quad$$Ileft( y ight) = int_0^{ + infty } {frac{{sin {x^2}}}{{1 + {x^y}}}dx} $$quad$在$left[ {0, + infty } ight)$上的一致收敛性
$f命题:$
$f(10中南大学六)$已知$int_0^{ + infty } {frac{{sin pi x}}{x}dx = frac{pi }{2}} $,求$Ileft( a ight) = int_0^{ + infty } {{e^{ - ax}}frac{{sin pi x}}{x}dx} left( {a > 0} ight)$
$f(12川大七)$设$fleft( x ight) = int_1^{ + infty } {frac{{sin xt}}{{tleft( {1 + {t^2}} ight)}}} dt,x in left( { - infty , + infty } ight)$
(1)证明:$f(x)$关于$x$在$( - infty , + infty)$上一致收敛
(2)证明:$lim limits_{x o egin{array}{*{20}{c}}{ + infty } end{array}} fleft( x ight) = 0$
(3)证明:$f(x)$在$( - infty , + infty)$上一致连续