zoukankan      html  css  js  c++  java
  • 关于含参变量反常积分一致收敛的专题讨论

    $f命题:$讨论$quad$$Ileft( y ight) = int_0^{ + infty } {frac{{sin {x^2}}}{{1 + {x^y}}}dx} $$quad$在$left[ {0, + infty } ight)$上的一致收敛性

    1  2

    $f命题:$

    $f(10中南大学六)$已知$int_0^{ + infty } {frac{{sin pi x}}{x}dx = frac{pi }{2}} $,求$Ileft( a ight) = int_0^{ + infty } {{e^{ - ax}}frac{{sin pi x}}{x}dx} left( {a > 0} ight)$

    1

    $f(12川大七)$设$fleft( x ight) = int_1^{ + infty } {frac{{sin xt}}{{tleft( {1 + {t^2}} ight)}}} dt,x in left( { - infty , + infty } ight)$

    (1)证明:$f(x)$关于$x$在$( - infty , + infty)$上一致收敛

    (2)证明:$lim limits_{x o egin{array}{*{20}{c}}{ + infty } end{array}} fleft( x ight) = 0$

    (3)证明:$f(x)$在$( - infty , + infty)$上一致连续

  • 相关阅读:
    Java基础五
    Java基础测试
    Java练习题
    Java基础四
    Java基础三
    Java基础二
    Java基础一
    大数据讲解
    python笔记之函数 二
    iOS UICollectionView的使用(用storyboard和xib创建)
  • 原文地址:https://www.cnblogs.com/ly142857/p/3672901.html
Copyright © 2011-2022 走看看