$f命题1:$设$A,B$实对称且$A$正定,则$AB$相似于对角阵
方法一:由$A$正定知,存在正定阵$C$,使得$A = {C^2}$,于是[AB = {C^2}B = Cleft( {CBC} ight){C^{ - 1}}]由$C$实对称知$CBC$实对称,则存在正交阵$Q$,使得[{Q^{ - 1}}left( {CBC} ight)Q = diagleft( {{lambda _1}, cdots {lambda _n}} ight)]从而可知结论成立