zoukankan      html  css  js  c++  java
  • 554554

    $f命题1:$$(f{Bendixon判别法})$设$sumlimits_{n = 1}^infty {{u_n}left( x ight)} $为$left[ {a,b} ight]$上的可微函数项级数,且$sumlimits_{n = 1}^infty {{u_n}^prime left( x ight)} $的部分和函数列在$left[ {a,b} ight]$上一致有界

    证明:如果$sumlimits_{n = 1}^infty {{u_n}left( x ight)} $在$left[ {a,b} ight]$上收敛,则必在$left[ {a,b} ight]$上一致收敛

    证明:由一致有界的定义知,存在$C>0$,使得对每个正整数$n$和每个$x in left[ {a,b} ight]$,有
    [left| {sumlimits_{k = 1}^n {{u_k}^prime left( x ight)} } ight| le C]
    对任给$varepsilon > 0$,取区间$left[ {a,b} ight]$的等距分划$left{ {{x_0},{x_1}, cdots ,{x_m}} ight}$,使得当$m$充分大时,分划的细度[Delta {x_i} = frac{{b - a}}{m} < frac{varepsilon }{{4C}}]
    由于$sumlimits_{n = 1}^infty {{u_n}left( x ight)} $在$left[ {a,b} ight]$上处处收敛,则由$f{Cauchy收敛准则}$知,对任给$varepsilon >0$,存在$N>0$,使得当$n>N$时,对任意正整数$p$和分划的每个分点${x_i}$,同时成立

    [left| {sumlimits_{k = n + 1}^{n + p} {{u_k}left( {{x_i}} ight)} } ight| < frac{varepsilon }{2},i = 0,1, cdots ,m]
    于是对任意$x in left[ {a,b} ight]$,不妨设$x in left[ {{x_{i - 1}},{x_i}} ight]$,由微分中值定理知,存在${xi _i} in left( {x,{x_i}} ight)$,使得
    egin{align*}
    left| {sumlimits_{k = n + 1}^{n + p} {{u_k}left( x ight)} } ight| &= left| {sumlimits_{k = n + 1}^{n + p} {{u_k}left( {{x_i}} ight)} + sumlimits_{k = n + 1}^{n + p} {left( {{u_k}left( x ight) - {u_k}left( {{x_i}} ight)} ight)} } ight|\&
    le left| {sumlimits_{k = n + 1}^{n + p} {{u_k}left( {{x_i}} ight)} } ight| + left| {sumlimits_{k = 1}^n {{u_k}^prime left( {{xi _i}} ight)} } ight|left| {x - {x_i}} ight|\&
    < frac{varepsilon }{2} + 2Cleft| {x - {x_i}} ight| le frac{varepsilon }{2} + frac{varepsilon }{2} = varepsilon 
    end{align*}
    从而由函数项级数一致收敛的$f{Cauchy准则}$即证

  • 相关阅读:
    (原)Lazarus 异构平台下多层架构思路、DataSet转换核心代码
    (学)新版动态表单研发,阶段成果3
    (学) 如何将 Oracle 序列 重置 清零 How to reset an Oracle sequence
    (学)XtraReport WebService Print 报错
    (原)三星 i6410 刷机 短信 无法 保存 解决 办法
    (原) Devexpress 汉化包 制作工具、测试程序
    linux下网络配置
    apache自带ab.exe小工具使用小结
    Yii::app()用法小结
    PDO使用小结
  • 原文地址:https://www.cnblogs.com/ly758241/p/3706442.html
Copyright © 2011-2022 走看看