zoukankan      html  css  js  c++  java
  • 554554

    $f命题1:$$(f{Bendixon判别法})$设$sumlimits_{n = 1}^infty {{u_n}left( x ight)} $为$left[ {a,b} ight]$上的可微函数项级数,且$sumlimits_{n = 1}^infty {{u_n}^prime left( x ight)} $的部分和函数列在$left[ {a,b} ight]$上一致有界

    证明:如果$sumlimits_{n = 1}^infty {{u_n}left( x ight)} $在$left[ {a,b} ight]$上收敛,则必在$left[ {a,b} ight]$上一致收敛

    证明:由一致有界的定义知,存在$C>0$,使得对每个正整数$n$和每个$x in left[ {a,b} ight]$,有
    [left| {sumlimits_{k = 1}^n {{u_k}^prime left( x ight)} } ight| le C]
    对任给$varepsilon > 0$,取区间$left[ {a,b} ight]$的等距分划$left{ {{x_0},{x_1}, cdots ,{x_m}} ight}$,使得当$m$充分大时,分划的细度[Delta {x_i} = frac{{b - a}}{m} < frac{varepsilon }{{4C}}]
    由于$sumlimits_{n = 1}^infty {{u_n}left( x ight)} $在$left[ {a,b} ight]$上处处收敛,则由$f{Cauchy收敛准则}$知,对任给$varepsilon >0$,存在$N>0$,使得当$n>N$时,对任意正整数$p$和分划的每个分点${x_i}$,同时成立

    [left| {sumlimits_{k = n + 1}^{n + p} {{u_k}left( {{x_i}} ight)} } ight| < frac{varepsilon }{2},i = 0,1, cdots ,m]
    于是对任意$x in left[ {a,b} ight]$,不妨设$x in left[ {{x_{i - 1}},{x_i}} ight]$,由微分中值定理知,存在${xi _i} in left( {x,{x_i}} ight)$,使得
    egin{align*}
    left| {sumlimits_{k = n + 1}^{n + p} {{u_k}left( x ight)} } ight| &= left| {sumlimits_{k = n + 1}^{n + p} {{u_k}left( {{x_i}} ight)} + sumlimits_{k = n + 1}^{n + p} {left( {{u_k}left( x ight) - {u_k}left( {{x_i}} ight)} ight)} } ight|\&
    le left| {sumlimits_{k = n + 1}^{n + p} {{u_k}left( {{x_i}} ight)} } ight| + left| {sumlimits_{k = 1}^n {{u_k}^prime left( {{xi _i}} ight)} } ight|left| {x - {x_i}} ight|\&
    < frac{varepsilon }{2} + 2Cleft| {x - {x_i}} ight| le frac{varepsilon }{2} + frac{varepsilon }{2} = varepsilon 
    end{align*}
    从而由函数项级数一致收敛的$f{Cauchy准则}$即证

  • 相关阅读:
    【java】对象赋值给另一个对象
    spring boot系列(五)spring boot 配置spring data jpa (查询方法)
    Spring Data JPA 查询
    Spring Data JPA 介绍
    OpenID简介
    OAUTH协议介绍
    URL encoding(URL编码)
    RESTful 介绍
    spring boot系列(四)spring boot 配置spring data jpa (保存修改删除方法)
    spring boot 启动报 java.lang.NoClassDefFoundError: ch/qos/logback/core/spi/LifeCycle 错误
  • 原文地址:https://www.cnblogs.com/ly758241/p/3706442.html
Copyright © 2011-2022 走看看