zoukankan      html  css  js  c++  java
  • Merge Sorted Array

    Given two sorted integer arrays A and B, merge B into A as one sorted array.
    
    Example
    A = [1, 2, 3, empty, empty], B = [4, 5]
    
    After merge, A will be filled as [1, 2, 3, 4, 5]
    
    Note
    You may assume that A has enough space (size that is greater or equal to m + n)
    to hold additional elements from B.
    The number of elements initialized in A and B are m and n respectively.

    因为本题有 in-place 的限制,故必须从数组末尾的两个元素开始比较;否则就会产生挪动,一旦挪动就会是 O(n^2) 的。自尾部向首部逐个比较两个数组内的元素,取较大的置于数组 A 中。由于 A 的容量较 B 大,故最后 m == 0 或者 n == 0 时仅需处理 B 中的元素,因为 A 中的元素已经在 A 中,无需处理。

    C++:

    class Solution {
    public:
        /**
         * @param A: sorted integer array A which has m elements,
         *           but size of A is m+n
         * @param B: sorted integer array B which has n elements
         * @return: void
         */
        void mergeSortedArray(int A[], int m, int B[], int n) {
            int index = m + n - 1;
            while (m > 0 && n > 0) {
                if (A[m - 1] > B[n - 1]) {
                    A[index] = A[m - 1];
                    --m;
                } else {
                    A[index] = B[n - 1];
                    --n;
                }
                --index;
            }
    
            // B has elements left
            while (n > 0) {
                A[index] = B[n - 1];
                --n;
                --index;
            }
        }
    };

    JAVA:

    class Solution {
        /**
         * @param A: sorted integer array A which has m elements,
         *           but size of A is m+n
         * @param B: sorted integer array B which has n elements
         * @return: void
         */
        public void mergeSortedArray(int[] A, int m, int[] B, int n) {
            if (A == null || B == null) return;
    
            int index = m + n - 1;
            while (m > 0 && n > 0) {
                if (A[m - 1] > B[n - 1]) {
                    A[index] = A[m - 1];
                    m--;
                } else {
                    A[index] = B[n - 1];
                    n--;
                }
                index--;
            }
    
            // B has elements left
            while (n > 0) {
                A[index] = B[n - 1];
                n--;
                index--;
            }
        }
    }

    源码分析

    第一个 while 只能用条件与。

    复杂度分析

    最坏情况下需要遍历两个数组中所有元素,时间复杂度为 O(n). 空间复杂度 O(1).

  • 相关阅读:
    Day60
    Day53
    Day50
    Day49
    Day48
    Day47
    Day46(2)
    Day46(1)
    Day45
    Day44
  • 原文地址:https://www.cnblogs.com/lyc94620/p/10592413.html
Copyright © 2011-2022 走看看