zoukankan      html  css  js  c++  java
  • [c][netCDF]官方c语言例子

    1.simplie.c

    创建一个netCDF数据、定义维度和数据。

    2.simple_nc4_wr.c

    在父组中创建两个共享维“ x”和“ y”,并在不同子组中创建一些netCDF变量。 变量将包括化合物和枚举类型,以及一些新的原子类型,例如无符号的64位整数。文件存储在simple_nc4.nc中。

    3.simple_nc4_rd.c

    本示例读取由simple_nc4_wr.c创建的简单文件。

    4.simple_xy_wr.c

    演示简单2D写入的示例程序。

    5.simple_xy_nc4_wr.c

    6.simple_xy_nc4_rd.c

    这些之前的都差不多,简单的读取数组。可以看看调用接口。

    主要看看下面的两个文件,例子:

    pres_temp_4D_wr.c

    /* Copyright 2019 University Corporation for Atmospheric
       Research/Unidata.  See COPYRIGHT file for conditions of use. */
    /**
     * @file
     * @ingroup tutorial
     * A more complex example of writing a netCDF file.
     *
     * This is an example program which writes some 4D pressure and
     * temperatures. It is intended to illustrate the use of the netCDF C
     * API. The companion program pres_temp_4D_rd.c shows how to read the
     * netCDF data file created by this program.
     *
     * @author Ed Hartnett
    */
    
    #include <stdio.h>
    #include <string.h>
    #include <netcdf.h>
    
    /* This is the name of the data file we will create. */
    #define FILE_NAME "pres_temp_4D.nc"
    
    /* We are writing 4D data, a 2 x 6 x 12 lvl-lat-lon grid, with 2
       timesteps of data. */
    #define NDIMS 4
    #define NLAT 6
    #define NLON 12
    #define LAT_NAME "latitude"
    #define LON_NAME "longitude"
    #define NREC 2
    #define REC_NAME "time"
    #define LVL_NAME "level"
    #define NLVL 2
    
    /* Names of things. */
    #define PRES_NAME "pressure"
    #define TEMP_NAME "temperature"
    #define UNITS "units"
    #define DEGREES_EAST "degrees_east"
    #define DEGREES_NORTH "degrees_north"
    
    /* These are used to construct some example data. */
    #define SAMPLE_PRESSURE 900
    #define SAMPLE_TEMP 9.0
    #define START_LAT 25.0
    #define START_LON -125.0
    
    /* For the units attributes. */
    #define UNITS "units"
    #define PRES_UNITS "hPa"
    #define TEMP_UNITS "celsius"
    #define LAT_UNITS "degrees_north"
    #define LON_UNITS "degrees_east"
    #define MAX_ATT_LEN 80
    
    /* Handle errors by printing an error message and exiting with a
     * non-zero status. */
    #define ERR(e) {printf("Error: %s
    ", nc_strerror(e)); return 2;}
    
    int
    main()
    {
       /* IDs for the netCDF file, dimensions, and variables. */
       int ncid, lon_dimid, lat_dimid, lvl_dimid, rec_dimid;
       int lat_varid, lon_varid, pres_varid, temp_varid;
       int dimids[NDIMS];
    
       /* The start and count arrays will tell the netCDF library where to
          write our data. */
       size_t start[NDIMS], count[NDIMS];
    
       /* Program variables to hold the data we will write out. We will only
          need enough space to hold one timestep of data; one record. */
       float pres_out[NLVL][NLAT][NLON];
       float temp_out[NLVL][NLAT][NLON];
    
       /* These program variables hold the latitudes and longitudes. */
       float lats[NLAT], lons[NLON];
    
       /* Loop indexes. */
       int lvl, lat, lon, rec, i = 0;
    
       /* Error handling. */
       int retval;
    
       /* Create some pretend data. If this wasn't an example program, we
        * would have some real data to write, for example, model
        * output. */
       for (lat = 0; lat < NLAT; lat++)
          lats[lat] = START_LAT + 5.*lat;
       for (lon = 0; lon < NLON; lon++)
          lons[lon] = START_LON + 5.*lon;
    
       for (lvl = 0; lvl < NLVL; lvl++)
          for (lat = 0; lat < NLAT; lat++)
         for (lon = 0; lon < NLON; lon++)
         {
            pres_out[lvl][lat][lon] = SAMPLE_PRESSURE + i;
            temp_out[lvl][lat][lon] = SAMPLE_TEMP + i++;
         }
    
       /* Create the file. */
       if ((retval = nc_create(FILE_NAME, NC_CLOBBER, &ncid)))
          ERR(retval);
    
       /* Define the dimensions. The record dimension is defined to have
        * unlimited length - it can grow as needed. In this example it is
        * the time dimension.*/
       if ((retval = nc_def_dim(ncid, LVL_NAME, NLVL, &lvl_dimid)))
          ERR(retval);
       if ((retval = nc_def_dim(ncid, LAT_NAME, NLAT, &lat_dimid)))
          ERR(retval);
       if ((retval = nc_def_dim(ncid, LON_NAME, NLON, &lon_dimid)))
          ERR(retval);
       if ((retval = nc_def_dim(ncid, REC_NAME, NC_UNLIMITED, &rec_dimid)))
          ERR(retval);
    
       /* Define the coordinate variables. We will only define coordinate
          variables for lat and lon.  Ordinarily we would need to provide
          an array of dimension IDs for each variable's dimensions, but
          since coordinate variables only have one dimension, we can
          simply provide the address of that dimension ID (&lat_dimid) and
          similarly for (&lon_dimid). */
       if ((retval = nc_def_var(ncid, LAT_NAME, NC_FLOAT, 1, &lat_dimid,
                    &lat_varid)))
          ERR(retval);
       if ((retval = nc_def_var(ncid, LON_NAME, NC_FLOAT, 1, &lon_dimid,
                    &lon_varid)))
          ERR(retval);
    
       /* Assign units attributes to coordinate variables. */
       if ((retval = nc_put_att_text(ncid, lat_varid, UNITS,
                     strlen(DEGREES_NORTH), DEGREES_NORTH)))
          ERR(retval);
       if ((retval = nc_put_att_text(ncid, lon_varid, UNITS,
                     strlen(DEGREES_EAST), DEGREES_EAST)))
          ERR(retval);
    
       /* The dimids array is used to pass the dimids of the dimensions of
          the netCDF variables. Both of the netCDF variables we are
          creating share the same four dimensions. In C, the
          unlimited dimension must come first on the list of dimids. */
       dimids[0] = rec_dimid;
       dimids[1] = lvl_dimid;
       dimids[2] = lat_dimid;
       dimids[3] = lon_dimid;
    
       /* Define the netCDF variables for the pressure and temperature
        * data. */
       if ((retval = nc_def_var(ncid, PRES_NAME, NC_FLOAT, NDIMS,
                    dimids, &pres_varid)))
          ERR(retval);
       if ((retval = nc_def_var(ncid, TEMP_NAME, NC_FLOAT, NDIMS,
                    dimids, &temp_varid)))
          ERR(retval);
    
       /* Assign units attributes to the netCDF variables. */
       if ((retval = nc_put_att_text(ncid, pres_varid, UNITS,
                     strlen(PRES_UNITS), PRES_UNITS)))
          ERR(retval);
       if ((retval = nc_put_att_text(ncid, temp_varid, UNITS,
                     strlen(TEMP_UNITS), TEMP_UNITS)))
          ERR(retval);
    
       /* End define mode. */
       if ((retval = nc_enddef(ncid)))
          ERR(retval);
    
       /* Write the coordinate variable data. This will put the latitudes
          and longitudes of our data grid into the netCDF file. */
       if ((retval = nc_put_var_float(ncid, lat_varid, &lats[0])))
          ERR(retval);
       if ((retval = nc_put_var_float(ncid, lon_varid, &lons[0])))
          ERR(retval);
    
       /* These settings tell netcdf to write one timestep of data. (The
         setting of start[0] inside the loop below tells netCDF which
         timestep to write.) */
       count[0] = 1;
       count[1] = NLVL;
       count[2] = NLAT;
       count[3] = NLON;
       start[1] = 0;
       start[2] = 0;
       start[3] = 0;
    
       /* Write the pretend data. This will write our surface pressure and
          surface temperature data. The arrays only hold one timestep worth
          of data. We will just rewrite the same data for each timestep. In
          a real application, the data would change between timesteps. */
       for (rec = 0; rec < NREC; rec++)
       {
          start[0] = rec;
          if ((retval = nc_put_vara_float(ncid, pres_varid, start, count,
                          &pres_out[0][0][0])))
         ERR(retval);
          if ((retval = nc_put_vara_float(ncid, temp_varid, start, count,
                          &temp_out[0][0][0])))
         ERR(retval);
       }
    
       /* Close the file. */
       if ((retval = nc_close(ncid)))
          ERR(retval);
    
       printf("*** SUCCESS writing example file %s!
    ", FILE_NAME);
       return 0;
    }
    View Code

    pres_temp_4D_rd.c

    /* Copyright 2006-2011 University Corporation for Atmospheric
    Research/Unidata. See COPYRIGHT file for conditions of use. */
    /**
     * @file
     * @ingroup tutorial
     * Example program for reading a 4D netCDF file
     *
     * This is an example which reads some 4D pressure and
     * temperatures. The data file read by this program is produced by the
     * companion program pres_temp_4D_wr.c. It is intended to illustrate
     * the use of the netCDF C API.
     *
     * This is part of the netCDF package. Full documentation of the netCDF can be found at
     * http://www.unidata.ucar.edu/software/netcdf/docs.
     *
     * @author Ed Hartnett
     */
    
    #include <stdio.h>
    #include <string.h>
    #include <netcdf.h>
    
    /* This is the name of the data file we will read. */
    #define FILE_NAME "E:/pres_temp_4D.nc"
    
    /* We are reading 4D data, a 2 x 6 x 12 lvl-lat-lon grid, with 2
       timesteps of data. */
    #define NDIMS 4
    #define NLAT 6
    #define NLON 12
    #define LAT_NAME "latitude"
    #define LON_NAME "longitude"
    #define NREC 2
    #define REC_NAME "time"
    #define LVL_NAME "level"
    #define NLVL 2
    
    /* Names of things. */
    #define PRES_NAME "pressure"
    #define TEMP_NAME "temperature"
    #define UNITS "units"
    #define DEGREES_EAST "degrees_east"
    #define DEGREES_NORTH "degrees_north"
    
    /* These are used to calculate the values we expect to find. */
    #define SAMPLE_PRESSURE 900
    #define SAMPLE_TEMP 9.0
    #define START_LAT 25.0
    #define START_LON -125.0
    
    /* For the units attributes. */
    #define UNITS "units"
    #define PRES_UNITS "hPa"
    #define TEMP_UNITS "celsius"
    #define LAT_UNITS "degrees_north"
    #define LON_UNITS "degrees_east"
    #define MAX_ATT_LEN 80
    
    /* Handle errors by printing an error message and exiting with a
     * non-zero status. */
    #define ERR(e) {printf("Error: %s
    ", nc_strerror(e)); return 2;}
    
    int
    main()
    {
       int ncid, pres_varid, temp_varid;
       int lat_varid, lon_varid;
    
       /* The start and count arrays will tell the netCDF library where to
          read our data. */
       size_t start[NDIMS], count[NDIMS];
    
       /* Program variables to hold the data we will read. We will only
          need enough space to hold one timestep of data; one record. */
       float pres_in[NLVL][NLAT][NLON];
       float temp_in[NLVL][NLAT][NLON];
    
       /* These program variables hold the latitudes and longitudes. */
       float lats[NLAT], lons[NLON];
    
       /* Loop indexes. */
       int lvl, lat, lon, rec, i = 0;
       
       /* Error handling. */
       int retval;
    
       /* Open the file. */
       if ((retval = nc_open(FILE_NAME, NC_NOWRITE, &ncid)))
          ERR(retval);
    
       /* Get the varids of the latitude and longitude coordinate
        * variables. */
       if ((retval = nc_inq_varid(ncid, LAT_NAME, &lat_varid)))
          ERR(retval);
       if ((retval = nc_inq_varid(ncid, LON_NAME, &lon_varid)))
          ERR(retval);
    
       /* Read the coordinate variable data. */
       if ((retval = nc_get_var_float(ncid, lat_varid, &lats[0])))
          ERR(retval);
       if ((retval = nc_get_var_float(ncid, lon_varid, &lons[0])))
          ERR(retval);
    
       /* Check the coordinate variable data. */
       for (lat = 0; lat < NLAT; lat++)
          if (lats[lat] != START_LAT + 5.*lat)
         return 2;
       for (lon = 0; lon < NLON; lon++)
          if (lons[lon] != START_LON + 5.*lon)
         return 2;
    
       /* Get the varids of the pressure and temperature netCDF
        * variables. */
       if ((retval = nc_inq_varid(ncid, PRES_NAME, &pres_varid)))
          ERR(retval);
       if ((retval = nc_inq_varid(ncid, TEMP_NAME, &temp_varid)))
          ERR(retval);
    
       /* Read the data. Since we know the contents of the file we know
        * that the data arrays in this program are the correct size to
        * hold one timestep. */
       count[0] = 1;
       count[1] = NLVL;
       count[2] = NLAT;
       count[3] = NLON;
       start[1] = 0;
       start[2] = 0;
       start[3] = 0;
    
       /* Read and check one record at a time. */
       for (rec = 0; rec < NREC; rec++)
       {
          start[0] = rec;
          if ((retval = nc_get_vara_float(ncid, pres_varid, start, 
                          count, &pres_in[0][0][0])))
         ERR(retval);
          if ((retval = nc_get_vara_float(ncid, temp_varid, start,
                          count, &temp_in[0][0][0])))
         ERR(retval);
    
          /* Check the data. */
          i = 0;
          for (lvl = 0; lvl < NLVL; lvl++)
         for (lat = 0; lat < NLAT; lat++)
            for (lon = 0; lon < NLON; lon++)
            {
               if (pres_in[lvl][lat][lon] != SAMPLE_PRESSURE + i) 
              return 2;
               if (temp_in[lvl][lat][lon] != SAMPLE_TEMP + i) 
              return 2;

    printf("pres_in:lvl%d,lat%d,lon%d :value %f ", lvl, lat, lon, pres_in[lvl][lat][lon]);
    printf("temp_in:lvl%d,lat%d,lon%d :value %f ", lvl, lat, lon, temp_in[lvl][lat][lon]);

               i++;
            }
    
       } /* next record */
    
       /* Close the file. */
       if ((retval = nc_close(ncid)))
          ERR(retval);
    
       printf("*** SUCCESS reading example file pres_temp_4D.nc!
    ");
       return 0;
    }

    打开文件  nc_open(FILE_NAME, NC_NOWRITE, &ncid)

    获取经度和纬度坐标变量的变量:

    nc_inq_varid(ncid, LAT_NAME, &lat_varid)

    nc_inq_varid(ncid, LON_NAME, &lon_varid)

    读取坐标变量数据

    nc_get_var_float(ncid, lat_varid, &lats[0])

    获取的压力varids和温度的netCDF变量

    nc_inq_varid(ncid, PRES_NAME, &pres_varid)

    读取压力字段

    nc_get_vara_float(ncid, pres_varid, start, count, &pres_in[0][0][0])

    这里有两个参数比较重要:count 和 start

    count[0] = 1;
    count[1] = NLVL;
    count[2] = NLAT;
    count[3] = NLON;

    start[0] = 0;
    start[1] = 0;
    start[2] = 0;
    start[3] = 0;

    start表示取值的起始点,count表示取了多少个值!

    start是在多维数组中的定位,count是一个多维计数的

    需要特别注意的是,这个时候取到的值,并不一定是最终值!

    有的时候还需要经过scale factor和add offset两步操作才能获取需要的值。

    输出:

    pres_in:lvl0,lat0,lon0 :value 900.000000
    temp_in:lvl0,lat0,lon0 :value 9.000000
    pres_in:lvl0,lat0,lon1 :value 901.000000
    temp_in:lvl0,lat0,lon1 :value 10.000000
    pres_in:lvl0,lat0,lon2 :value 902.000000
    temp_in:lvl0,lat0,lon2 :value 11.000000
    pres_in:lvl0,lat0,lon3 :value 903.000000
    temp_in:lvl0,lat0,lon3 :value 12.000000
    pres_in:lvl0,lat0,lon4 :value 904.000000
    temp_in:lvl0,lat0,lon4 :value 13.000000
    pres_in:lvl0,lat0,lon5 :value 905.000000
    temp_in:lvl0,lat0,lon5 :value 14.000000
    pres_in:lvl0,lat0,lon6 :value 906.000000
    temp_in:lvl0,lat0,lon6 :value 15.000000
    pres_in:lvl0,lat0,lon7 :value 907.000000
    temp_in:lvl0,lat0,lon7 :value 16.000000
    pres_in:lvl0,lat0,lon8 :value 908.000000
    temp_in:lvl0,lat0,lon8 :value 17.000000
    pres_in:lvl0,lat0,lon9 :value 909.000000
    temp_in:lvl0,lat0,lon9 :value 18.000000
    pres_in:lvl0,lat0,lon10 :value 910.000000
    temp_in:lvl0,lat0,lon10 :value 19.000000
    pres_in:lvl0,lat0,lon11 :value 911.000000
    temp_in:lvl0,lat0,lon11 :value 20.000000
    pres_in:lvl0,lat1,lon0 :value 912.000000
    temp_in:lvl0,lat1,lon0 :value 21.000000
    pres_in:lvl0,lat1,lon1 :value 913.000000
    temp_in:lvl0,lat1,lon1 :value 22.000000
    pres_in:lvl0,lat1,lon2 :value 914.000000
    temp_in:lvl0,lat1,lon2 :value 23.000000
    pres_in:lvl0,lat1,lon3 :value 915.000000
    temp_in:lvl0,lat1,lon3 :value 24.000000
    pres_in:lvl0,lat1,lon4 :value 916.000000
    temp_in:lvl0,lat1,lon4 :value 25.000000
    pres_in:lvl0,lat1,lon5 :value 917.000000
    temp_in:lvl0,lat1,lon5 :value 26.000000
    pres_in:lvl0,lat1,lon6 :value 918.000000
    temp_in:lvl0,lat1,lon6 :value 27.000000
    pres_in:lvl0,lat1,lon7 :value 919.000000
    temp_in:lvl0,lat1,lon7 :value 28.000000
    pres_in:lvl0,lat1,lon8 :value 920.000000
    temp_in:lvl0,lat1,lon8 :value 29.000000
    pres_in:lvl0,lat1,lon9 :value 921.000000
    temp_in:lvl0,lat1,lon9 :value 30.000000
    pres_in:lvl0,lat1,lon10 :value 922.000000
    temp_in:lvl0,lat1,lon10 :value 31.000000
    pres_in:lvl0,lat1,lon11 :value 923.000000
    temp_in:lvl0,lat1,lon11 :value 32.000000
    pres_in:lvl0,lat2,lon0 :value 924.000000
    temp_in:lvl0,lat2,lon0 :value 33.000000
    pres_in:lvl0,lat2,lon1 :value 925.000000
    temp_in:lvl0,lat2,lon1 :value 34.000000
    pres_in:lvl0,lat2,lon2 :value 926.000000
    temp_in:lvl0,lat2,lon2 :value 35.000000
    pres_in:lvl0,lat2,lon3 :value 927.000000
    temp_in:lvl0,lat2,lon3 :value 36.000000
    pres_in:lvl0,lat2,lon4 :value 928.000000
    temp_in:lvl0,lat2,lon4 :value 37.000000
    pres_in:lvl0,lat2,lon5 :value 929.000000
    temp_in:lvl0,lat2,lon5 :value 38.000000
    pres_in:lvl0,lat2,lon6 :value 930.000000
    temp_in:lvl0,lat2,lon6 :value 39.000000
    pres_in:lvl0,lat2,lon7 :value 931.000000
    temp_in:lvl0,lat2,lon7 :value 40.000000
    pres_in:lvl0,lat2,lon8 :value 932.000000
    temp_in:lvl0,lat2,lon8 :value 41.000000
    pres_in:lvl0,lat2,lon9 :value 933.000000
    temp_in:lvl0,lat2,lon9 :value 42.000000
    pres_in:lvl0,lat2,lon10 :value 934.000000
    temp_in:lvl0,lat2,lon10 :value 43.000000
    pres_in:lvl0,lat2,lon11 :value 935.000000
    temp_in:lvl0,lat2,lon11 :value 44.000000
    pres_in:lvl0,lat3,lon0 :value 936.000000
    temp_in:lvl0,lat3,lon0 :value 45.000000
    pres_in:lvl0,lat3,lon1 :value 937.000000
    temp_in:lvl0,lat3,lon1 :value 46.000000
    pres_in:lvl0,lat3,lon2 :value 938.000000
    temp_in:lvl0,lat3,lon2 :value 47.000000
    pres_in:lvl0,lat3,lon3 :value 939.000000
    temp_in:lvl0,lat3,lon3 :value 48.000000
    pres_in:lvl0,lat3,lon4 :value 940.000000
    temp_in:lvl0,lat3,lon4 :value 49.000000
    pres_in:lvl0,lat3,lon5 :value 941.000000
    temp_in:lvl0,lat3,lon5 :value 50.000000
    pres_in:lvl0,lat3,lon6 :value 942.000000
    temp_in:lvl0,lat3,lon6 :value 51.000000
    pres_in:lvl0,lat3,lon7 :value 943.000000
    temp_in:lvl0,lat3,lon7 :value 52.000000
    pres_in:lvl0,lat3,lon8 :value 944.000000
    temp_in:lvl0,lat3,lon8 :value 53.000000
    pres_in:lvl0,lat3,lon9 :value 945.000000
    temp_in:lvl0,lat3,lon9 :value 54.000000
    pres_in:lvl0,lat3,lon10 :value 946.000000
    temp_in:lvl0,lat3,lon10 :value 55.000000
    pres_in:lvl0,lat3,lon11 :value 947.000000
    temp_in:lvl0,lat3,lon11 :value 56.000000
    pres_in:lvl0,lat4,lon0 :value 948.000000
    temp_in:lvl0,lat4,lon0 :value 57.000000
    pres_in:lvl0,lat4,lon1 :value 949.000000
    temp_in:lvl0,lat4,lon1 :value 58.000000
    pres_in:lvl0,lat4,lon2 :value 950.000000
    temp_in:lvl0,lat4,lon2 :value 59.000000
    pres_in:lvl0,lat4,lon3 :value 951.000000
    temp_in:lvl0,lat4,lon3 :value 60.000000
    pres_in:lvl0,lat4,lon4 :value 952.000000
    temp_in:lvl0,lat4,lon4 :value 61.000000
    pres_in:lvl0,lat4,lon5 :value 953.000000
    temp_in:lvl0,lat4,lon5 :value 62.000000
    pres_in:lvl0,lat4,lon6 :value 954.000000
    temp_in:lvl0,lat4,lon6 :value 63.000000
    pres_in:lvl0,lat4,lon7 :value 955.000000
    temp_in:lvl0,lat4,lon7 :value 64.000000
    pres_in:lvl0,lat4,lon8 :value 956.000000
    temp_in:lvl0,lat4,lon8 :value 65.000000
    pres_in:lvl0,lat4,lon9 :value 957.000000
    temp_in:lvl0,lat4,lon9 :value 66.000000
    pres_in:lvl0,lat4,lon10 :value 958.000000
    temp_in:lvl0,lat4,lon10 :value 67.000000
    pres_in:lvl0,lat4,lon11 :value 959.000000
    temp_in:lvl0,lat4,lon11 :value 68.000000
    pres_in:lvl0,lat5,lon0 :value 960.000000
    temp_in:lvl0,lat5,lon0 :value 69.000000
    pres_in:lvl0,lat5,lon1 :value 961.000000
    temp_in:lvl0,lat5,lon1 :value 70.000000
    pres_in:lvl0,lat5,lon2 :value 962.000000
    temp_in:lvl0,lat5,lon2 :value 71.000000
    pres_in:lvl0,lat5,lon3 :value 963.000000
    temp_in:lvl0,lat5,lon3 :value 72.000000
    pres_in:lvl0,lat5,lon4 :value 964.000000
    temp_in:lvl0,lat5,lon4 :value 73.000000
    pres_in:lvl0,lat5,lon5 :value 965.000000
    temp_in:lvl0,lat5,lon5 :value 74.000000
    pres_in:lvl0,lat5,lon6 :value 966.000000
    temp_in:lvl0,lat5,lon6 :value 75.000000
    pres_in:lvl0,lat5,lon7 :value 967.000000
    temp_in:lvl0,lat5,lon7 :value 76.000000
    pres_in:lvl0,lat5,lon8 :value 968.000000
    temp_in:lvl0,lat5,lon8 :value 77.000000
    pres_in:lvl0,lat5,lon9 :value 969.000000
    temp_in:lvl0,lat5,lon9 :value 78.000000
    pres_in:lvl0,lat5,lon10 :value 970.000000
    temp_in:lvl0,lat5,lon10 :value 79.000000
    pres_in:lvl0,lat5,lon11 :value 971.000000
    temp_in:lvl0,lat5,lon11 :value 80.000000
    pres_in:lvl1,lat0,lon0 :value 972.000000
    temp_in:lvl1,lat0,lon0 :value 81.000000
    pres_in:lvl1,lat0,lon1 :value 973.000000
    temp_in:lvl1,lat0,lon1 :value 82.000000
    pres_in:lvl1,lat0,lon2 :value 974.000000
    temp_in:lvl1,lat0,lon2 :value 83.000000
    pres_in:lvl1,lat0,lon3 :value 975.000000
    temp_in:lvl1,lat0,lon3 :value 84.000000
    pres_in:lvl1,lat0,lon4 :value 976.000000
    temp_in:lvl1,lat0,lon4 :value 85.000000
    pres_in:lvl1,lat0,lon5 :value 977.000000
    temp_in:lvl1,lat0,lon5 :value 86.000000
    pres_in:lvl1,lat0,lon6 :value 978.000000
    temp_in:lvl1,lat0,lon6 :value 87.000000
    pres_in:lvl1,lat0,lon7 :value 979.000000
    temp_in:lvl1,lat0,lon7 :value 88.000000
    pres_in:lvl1,lat0,lon8 :value 980.000000
    temp_in:lvl1,lat0,lon8 :value 89.000000
    pres_in:lvl1,lat0,lon9 :value 981.000000
    temp_in:lvl1,lat0,lon9 :value 90.000000
    pres_in:lvl1,lat0,lon10 :value 982.000000
    temp_in:lvl1,lat0,lon10 :value 91.000000
    pres_in:lvl1,lat0,lon11 :value 983.000000
    temp_in:lvl1,lat0,lon11 :value 92.000000
    pres_in:lvl1,lat1,lon0 :value 984.000000
    temp_in:lvl1,lat1,lon0 :value 93.000000
    pres_in:lvl1,lat1,lon1 :value 985.000000
    temp_in:lvl1,lat1,lon1 :value 94.000000
    pres_in:lvl1,lat1,lon2 :value 986.000000
    temp_in:lvl1,lat1,lon2 :value 95.000000
    pres_in:lvl1,lat1,lon3 :value 987.000000
    temp_in:lvl1,lat1,lon3 :value 96.000000
    pres_in:lvl1,lat1,lon4 :value 988.000000
    temp_in:lvl1,lat1,lon4 :value 97.000000
    pres_in:lvl1,lat1,lon5 :value 989.000000
    temp_in:lvl1,lat1,lon5 :value 98.000000
    pres_in:lvl1,lat1,lon6 :value 990.000000
    temp_in:lvl1,lat1,lon6 :value 99.000000
    pres_in:lvl1,lat1,lon7 :value 991.000000
    temp_in:lvl1,lat1,lon7 :value 100.000000
    pres_in:lvl1,lat1,lon8 :value 992.000000
    temp_in:lvl1,lat1,lon8 :value 101.000000
    pres_in:lvl1,lat1,lon9 :value 993.000000
    temp_in:lvl1,lat1,lon9 :value 102.000000
    pres_in:lvl1,lat1,lon10 :value 994.000000
    temp_in:lvl1,lat1,lon10 :value 103.000000
    pres_in:lvl1,lat1,lon11 :value 995.000000
    temp_in:lvl1,lat1,lon11 :value 104.000000
    pres_in:lvl1,lat2,lon0 :value 996.000000
    temp_in:lvl1,lat2,lon0 :value 105.000000
    pres_in:lvl1,lat2,lon1 :value 997.000000
    temp_in:lvl1,lat2,lon1 :value 106.000000
    pres_in:lvl1,lat2,lon2 :value 998.000000
    temp_in:lvl1,lat2,lon2 :value 107.000000
    pres_in:lvl1,lat2,lon3 :value 999.000000
    temp_in:lvl1,lat2,lon3 :value 108.000000
    pres_in:lvl1,lat2,lon4 :value 1000.000000
    temp_in:lvl1,lat2,lon4 :value 109.000000
    pres_in:lvl1,lat2,lon5 :value 1001.000000
    temp_in:lvl1,lat2,lon5 :value 110.000000
    pres_in:lvl1,lat2,lon6 :value 1002.000000
    temp_in:lvl1,lat2,lon6 :value 111.000000
    pres_in:lvl1,lat2,lon7 :value 1003.000000
    temp_in:lvl1,lat2,lon7 :value 112.000000
    pres_in:lvl1,lat2,lon8 :value 1004.000000
    temp_in:lvl1,lat2,lon8 :value 113.000000
    pres_in:lvl1,lat2,lon9 :value 1005.000000
    temp_in:lvl1,lat2,lon9 :value 114.000000
    pres_in:lvl1,lat2,lon10 :value 1006.000000
    temp_in:lvl1,lat2,lon10 :value 115.000000
    pres_in:lvl1,lat2,lon11 :value 1007.000000
    temp_in:lvl1,lat2,lon11 :value 116.000000
    pres_in:lvl1,lat3,lon0 :value 1008.000000
    temp_in:lvl1,lat3,lon0 :value 117.000000
    pres_in:lvl1,lat3,lon1 :value 1009.000000
    temp_in:lvl1,lat3,lon1 :value 118.000000
    pres_in:lvl1,lat3,lon2 :value 1010.000000
    temp_in:lvl1,lat3,lon2 :value 119.000000
    pres_in:lvl1,lat3,lon3 :value 1011.000000
    temp_in:lvl1,lat3,lon3 :value 120.000000
    pres_in:lvl1,lat3,lon4 :value 1012.000000
    temp_in:lvl1,lat3,lon4 :value 121.000000
    pres_in:lvl1,lat3,lon5 :value 1013.000000
    temp_in:lvl1,lat3,lon5 :value 122.000000
    pres_in:lvl1,lat3,lon6 :value 1014.000000
    temp_in:lvl1,lat3,lon6 :value 123.000000
    pres_in:lvl1,lat3,lon7 :value 1015.000000
    temp_in:lvl1,lat3,lon7 :value 124.000000
    pres_in:lvl1,lat3,lon8 :value 1016.000000
    temp_in:lvl1,lat3,lon8 :value 125.000000
    pres_in:lvl1,lat3,lon9 :value 1017.000000
    temp_in:lvl1,lat3,lon9 :value 126.000000
    pres_in:lvl1,lat3,lon10 :value 1018.000000
    temp_in:lvl1,lat3,lon10 :value 127.000000
    pres_in:lvl1,lat3,lon11 :value 1019.000000
    temp_in:lvl1,lat3,lon11 :value 128.000000
    pres_in:lvl1,lat4,lon0 :value 1020.000000
    temp_in:lvl1,lat4,lon0 :value 129.000000
    pres_in:lvl1,lat4,lon1 :value 1021.000000
    temp_in:lvl1,lat4,lon1 :value 130.000000
    pres_in:lvl1,lat4,lon2 :value 1022.000000
    temp_in:lvl1,lat4,lon2 :value 131.000000
    pres_in:lvl1,lat4,lon3 :value 1023.000000
    temp_in:lvl1,lat4,lon3 :value 132.000000
    pres_in:lvl1,lat4,lon4 :value 1024.000000
    temp_in:lvl1,lat4,lon4 :value 133.000000
    pres_in:lvl1,lat4,lon5 :value 1025.000000
    temp_in:lvl1,lat4,lon5 :value 134.000000
    pres_in:lvl1,lat4,lon6 :value 1026.000000
    temp_in:lvl1,lat4,lon6 :value 135.000000
    pres_in:lvl1,lat4,lon7 :value 1027.000000
    temp_in:lvl1,lat4,lon7 :value 136.000000
    pres_in:lvl1,lat4,lon8 :value 1028.000000
    temp_in:lvl1,lat4,lon8 :value 137.000000
    pres_in:lvl1,lat4,lon9 :value 1029.000000
    temp_in:lvl1,lat4,lon9 :value 138.000000
    pres_in:lvl1,lat4,lon10 :value 1030.000000
    temp_in:lvl1,lat4,lon10 :value 139.000000
    pres_in:lvl1,lat4,lon11 :value 1031.000000
    temp_in:lvl1,lat4,lon11 :value 140.000000
    pres_in:lvl1,lat5,lon0 :value 1032.000000
    temp_in:lvl1,lat5,lon0 :value 141.000000
    pres_in:lvl1,lat5,lon1 :value 1033.000000
    temp_in:lvl1,lat5,lon1 :value 142.000000
    pres_in:lvl1,lat5,lon2 :value 1034.000000
    temp_in:lvl1,lat5,lon2 :value 143.000000
    pres_in:lvl1,lat5,lon3 :value 1035.000000
    temp_in:lvl1,lat5,lon3 :value 144.000000
    pres_in:lvl1,lat5,lon4 :value 1036.000000
    temp_in:lvl1,lat5,lon4 :value 145.000000
    pres_in:lvl1,lat5,lon5 :value 1037.000000
    temp_in:lvl1,lat5,lon5 :value 146.000000
    pres_in:lvl1,lat5,lon6 :value 1038.000000
    temp_in:lvl1,lat5,lon6 :value 147.000000
    pres_in:lvl1,lat5,lon7 :value 1039.000000
    temp_in:lvl1,lat5,lon7 :value 148.000000
    pres_in:lvl1,lat5,lon8 :value 1040.000000
    temp_in:lvl1,lat5,lon8 :value 149.000000
    pres_in:lvl1,lat5,lon9 :value 1041.000000
    temp_in:lvl1,lat5,lon9 :value 150.000000
    pres_in:lvl1,lat5,lon10 :value 1042.000000
    temp_in:lvl1,lat5,lon10 :value 151.000000
    pres_in:lvl1,lat5,lon11 :value 1043.000000
    temp_in:lvl1,lat5,lon11 :value 152.000000
    pres_in:lvl0,lat0,lon0 :value 900.000000
    temp_in:lvl0,lat0,lon0 :value 9.000000
    pres_in:lvl0,lat0,lon1 :value 901.000000
    temp_in:lvl0,lat0,lon1 :value 10.000000
    pres_in:lvl0,lat0,lon2 :value 902.000000
    temp_in:lvl0,lat0,lon2 :value 11.000000
    pres_in:lvl0,lat0,lon3 :value 903.000000
    temp_in:lvl0,lat0,lon3 :value 12.000000
    pres_in:lvl0,lat0,lon4 :value 904.000000
    temp_in:lvl0,lat0,lon4 :value 13.000000
    pres_in:lvl0,lat0,lon5 :value 905.000000
    temp_in:lvl0,lat0,lon5 :value 14.000000
    pres_in:lvl0,lat0,lon6 :value 906.000000
    temp_in:lvl0,lat0,lon6 :value 15.000000
    pres_in:lvl0,lat0,lon7 :value 907.000000
    temp_in:lvl0,lat0,lon7 :value 16.000000
    pres_in:lvl0,lat0,lon8 :value 908.000000
    temp_in:lvl0,lat0,lon8 :value 17.000000
    pres_in:lvl0,lat0,lon9 :value 909.000000
    temp_in:lvl0,lat0,lon9 :value 18.000000
    pres_in:lvl0,lat0,lon10 :value 910.000000
    temp_in:lvl0,lat0,lon10 :value 19.000000
    pres_in:lvl0,lat0,lon11 :value 911.000000
    temp_in:lvl0,lat0,lon11 :value 20.000000
    pres_in:lvl0,lat1,lon0 :value 912.000000
    temp_in:lvl0,lat1,lon0 :value 21.000000
    pres_in:lvl0,lat1,lon1 :value 913.000000
    temp_in:lvl0,lat1,lon1 :value 22.000000
    pres_in:lvl0,lat1,lon2 :value 914.000000
    temp_in:lvl0,lat1,lon2 :value 23.000000
    pres_in:lvl0,lat1,lon3 :value 915.000000
    temp_in:lvl0,lat1,lon3 :value 24.000000
    pres_in:lvl0,lat1,lon4 :value 916.000000
    temp_in:lvl0,lat1,lon4 :value 25.000000
    pres_in:lvl0,lat1,lon5 :value 917.000000
    temp_in:lvl0,lat1,lon5 :value 26.000000
    pres_in:lvl0,lat1,lon6 :value 918.000000
    temp_in:lvl0,lat1,lon6 :value 27.000000
    pres_in:lvl0,lat1,lon7 :value 919.000000
    temp_in:lvl0,lat1,lon7 :value 28.000000
    pres_in:lvl0,lat1,lon8 :value 920.000000
    temp_in:lvl0,lat1,lon8 :value 29.000000
    pres_in:lvl0,lat1,lon9 :value 921.000000
    temp_in:lvl0,lat1,lon9 :value 30.000000
    pres_in:lvl0,lat1,lon10 :value 922.000000
    temp_in:lvl0,lat1,lon10 :value 31.000000
    pres_in:lvl0,lat1,lon11 :value 923.000000
    temp_in:lvl0,lat1,lon11 :value 32.000000
    pres_in:lvl0,lat2,lon0 :value 924.000000
    temp_in:lvl0,lat2,lon0 :value 33.000000
    pres_in:lvl0,lat2,lon1 :value 925.000000
    temp_in:lvl0,lat2,lon1 :value 34.000000
    pres_in:lvl0,lat2,lon2 :value 926.000000
    temp_in:lvl0,lat2,lon2 :value 35.000000
    pres_in:lvl0,lat2,lon3 :value 927.000000
    temp_in:lvl0,lat2,lon3 :value 36.000000
    pres_in:lvl0,lat2,lon4 :value 928.000000
    temp_in:lvl0,lat2,lon4 :value 37.000000
    pres_in:lvl0,lat2,lon5 :value 929.000000
    temp_in:lvl0,lat2,lon5 :value 38.000000
    pres_in:lvl0,lat2,lon6 :value 930.000000
    temp_in:lvl0,lat2,lon6 :value 39.000000
    pres_in:lvl0,lat2,lon7 :value 931.000000
    temp_in:lvl0,lat2,lon7 :value 40.000000
    pres_in:lvl0,lat2,lon8 :value 932.000000
    temp_in:lvl0,lat2,lon8 :value 41.000000
    pres_in:lvl0,lat2,lon9 :value 933.000000
    temp_in:lvl0,lat2,lon9 :value 42.000000
    pres_in:lvl0,lat2,lon10 :value 934.000000
    temp_in:lvl0,lat2,lon10 :value 43.000000
    pres_in:lvl0,lat2,lon11 :value 935.000000
    temp_in:lvl0,lat2,lon11 :value 44.000000
    pres_in:lvl0,lat3,lon0 :value 936.000000
    temp_in:lvl0,lat3,lon0 :value 45.000000
    pres_in:lvl0,lat3,lon1 :value 937.000000
    temp_in:lvl0,lat3,lon1 :value 46.000000
    pres_in:lvl0,lat3,lon2 :value 938.000000
    temp_in:lvl0,lat3,lon2 :value 47.000000
    pres_in:lvl0,lat3,lon3 :value 939.000000
    temp_in:lvl0,lat3,lon3 :value 48.000000
    pres_in:lvl0,lat3,lon4 :value 940.000000
    temp_in:lvl0,lat3,lon4 :value 49.000000
    pres_in:lvl0,lat3,lon5 :value 941.000000
    temp_in:lvl0,lat3,lon5 :value 50.000000
    pres_in:lvl0,lat3,lon6 :value 942.000000
    temp_in:lvl0,lat3,lon6 :value 51.000000
    pres_in:lvl0,lat3,lon7 :value 943.000000
    temp_in:lvl0,lat3,lon7 :value 52.000000
    pres_in:lvl0,lat3,lon8 :value 944.000000
    temp_in:lvl0,lat3,lon8 :value 53.000000
    pres_in:lvl0,lat3,lon9 :value 945.000000
    temp_in:lvl0,lat3,lon9 :value 54.000000
    pres_in:lvl0,lat3,lon10 :value 946.000000
    temp_in:lvl0,lat3,lon10 :value 55.000000
    pres_in:lvl0,lat3,lon11 :value 947.000000
    temp_in:lvl0,lat3,lon11 :value 56.000000
    pres_in:lvl0,lat4,lon0 :value 948.000000
    temp_in:lvl0,lat4,lon0 :value 57.000000
    pres_in:lvl0,lat4,lon1 :value 949.000000
    temp_in:lvl0,lat4,lon1 :value 58.000000
    pres_in:lvl0,lat4,lon2 :value 950.000000
    temp_in:lvl0,lat4,lon2 :value 59.000000
    pres_in:lvl0,lat4,lon3 :value 951.000000
    temp_in:lvl0,lat4,lon3 :value 60.000000
    pres_in:lvl0,lat4,lon4 :value 952.000000
    temp_in:lvl0,lat4,lon4 :value 61.000000
    pres_in:lvl0,lat4,lon5 :value 953.000000
    temp_in:lvl0,lat4,lon5 :value 62.000000
    pres_in:lvl0,lat4,lon6 :value 954.000000
    temp_in:lvl0,lat4,lon6 :value 63.000000
    pres_in:lvl0,lat4,lon7 :value 955.000000
    temp_in:lvl0,lat4,lon7 :value 64.000000
    pres_in:lvl0,lat4,lon8 :value 956.000000
    temp_in:lvl0,lat4,lon8 :value 65.000000
    pres_in:lvl0,lat4,lon9 :value 957.000000
    temp_in:lvl0,lat4,lon9 :value 66.000000
    pres_in:lvl0,lat4,lon10 :value 958.000000
    temp_in:lvl0,lat4,lon10 :value 67.000000
    pres_in:lvl0,lat4,lon11 :value 959.000000
    temp_in:lvl0,lat4,lon11 :value 68.000000
    pres_in:lvl0,lat5,lon0 :value 960.000000
    temp_in:lvl0,lat5,lon0 :value 69.000000
    pres_in:lvl0,lat5,lon1 :value 961.000000
    temp_in:lvl0,lat5,lon1 :value 70.000000
    pres_in:lvl0,lat5,lon2 :value 962.000000
    temp_in:lvl0,lat5,lon2 :value 71.000000
    pres_in:lvl0,lat5,lon3 :value 963.000000
    temp_in:lvl0,lat5,lon3 :value 72.000000
    pres_in:lvl0,lat5,lon4 :value 964.000000
    temp_in:lvl0,lat5,lon4 :value 73.000000
    pres_in:lvl0,lat5,lon5 :value 965.000000
    temp_in:lvl0,lat5,lon5 :value 74.000000
    pres_in:lvl0,lat5,lon6 :value 966.000000
    temp_in:lvl0,lat5,lon6 :value 75.000000
    pres_in:lvl0,lat5,lon7 :value 967.000000
    temp_in:lvl0,lat5,lon7 :value 76.000000
    pres_in:lvl0,lat5,lon8 :value 968.000000
    temp_in:lvl0,lat5,lon8 :value 77.000000
    pres_in:lvl0,lat5,lon9 :value 969.000000
    temp_in:lvl0,lat5,lon9 :value 78.000000
    pres_in:lvl0,lat5,lon10 :value 970.000000
    temp_in:lvl0,lat5,lon10 :value 79.000000
    pres_in:lvl0,lat5,lon11 :value 971.000000
    temp_in:lvl0,lat5,lon11 :value 80.000000
    pres_in:lvl1,lat0,lon0 :value 972.000000
    temp_in:lvl1,lat0,lon0 :value 81.000000
    pres_in:lvl1,lat0,lon1 :value 973.000000
    temp_in:lvl1,lat0,lon1 :value 82.000000
    pres_in:lvl1,lat0,lon2 :value 974.000000
    temp_in:lvl1,lat0,lon2 :value 83.000000
    pres_in:lvl1,lat0,lon3 :value 975.000000
    temp_in:lvl1,lat0,lon3 :value 84.000000
    pres_in:lvl1,lat0,lon4 :value 976.000000
    temp_in:lvl1,lat0,lon4 :value 85.000000
    pres_in:lvl1,lat0,lon5 :value 977.000000
    temp_in:lvl1,lat0,lon5 :value 86.000000
    pres_in:lvl1,lat0,lon6 :value 978.000000
    temp_in:lvl1,lat0,lon6 :value 87.000000
    pres_in:lvl1,lat0,lon7 :value 979.000000
    temp_in:lvl1,lat0,lon7 :value 88.000000
    pres_in:lvl1,lat0,lon8 :value 980.000000
    temp_in:lvl1,lat0,lon8 :value 89.000000
    pres_in:lvl1,lat0,lon9 :value 981.000000
    temp_in:lvl1,lat0,lon9 :value 90.000000
    pres_in:lvl1,lat0,lon10 :value 982.000000
    temp_in:lvl1,lat0,lon10 :value 91.000000
    pres_in:lvl1,lat0,lon11 :value 983.000000
    temp_in:lvl1,lat0,lon11 :value 92.000000
    pres_in:lvl1,lat1,lon0 :value 984.000000
    temp_in:lvl1,lat1,lon0 :value 93.000000
    pres_in:lvl1,lat1,lon1 :value 985.000000
    temp_in:lvl1,lat1,lon1 :value 94.000000
    pres_in:lvl1,lat1,lon2 :value 986.000000
    temp_in:lvl1,lat1,lon2 :value 95.000000
    pres_in:lvl1,lat1,lon3 :value 987.000000
    temp_in:lvl1,lat1,lon3 :value 96.000000
    pres_in:lvl1,lat1,lon4 :value 988.000000
    temp_in:lvl1,lat1,lon4 :value 97.000000
    pres_in:lvl1,lat1,lon5 :value 989.000000
    temp_in:lvl1,lat1,lon5 :value 98.000000
    pres_in:lvl1,lat1,lon6 :value 990.000000
    temp_in:lvl1,lat1,lon6 :value 99.000000
    pres_in:lvl1,lat1,lon7 :value 991.000000
    temp_in:lvl1,lat1,lon7 :value 100.000000
    pres_in:lvl1,lat1,lon8 :value 992.000000
    temp_in:lvl1,lat1,lon8 :value 101.000000
    pres_in:lvl1,lat1,lon9 :value 993.000000
    temp_in:lvl1,lat1,lon9 :value 102.000000
    pres_in:lvl1,lat1,lon10 :value 994.000000
    temp_in:lvl1,lat1,lon10 :value 103.000000
    pres_in:lvl1,lat1,lon11 :value 995.000000
    temp_in:lvl1,lat1,lon11 :value 104.000000
    pres_in:lvl1,lat2,lon0 :value 996.000000
    temp_in:lvl1,lat2,lon0 :value 105.000000
    pres_in:lvl1,lat2,lon1 :value 997.000000
    temp_in:lvl1,lat2,lon1 :value 106.000000
    pres_in:lvl1,lat2,lon2 :value 998.000000
    temp_in:lvl1,lat2,lon2 :value 107.000000
    pres_in:lvl1,lat2,lon3 :value 999.000000
    temp_in:lvl1,lat2,lon3 :value 108.000000
    pres_in:lvl1,lat2,lon4 :value 1000.000000
    temp_in:lvl1,lat2,lon4 :value 109.000000
    pres_in:lvl1,lat2,lon5 :value 1001.000000
    temp_in:lvl1,lat2,lon5 :value 110.000000
    pres_in:lvl1,lat2,lon6 :value 1002.000000
    temp_in:lvl1,lat2,lon6 :value 111.000000
    pres_in:lvl1,lat2,lon7 :value 1003.000000
    temp_in:lvl1,lat2,lon7 :value 112.000000
    pres_in:lvl1,lat2,lon8 :value 1004.000000
    temp_in:lvl1,lat2,lon8 :value 113.000000
    pres_in:lvl1,lat2,lon9 :value 1005.000000
    temp_in:lvl1,lat2,lon9 :value 114.000000
    pres_in:lvl1,lat2,lon10 :value 1006.000000
    temp_in:lvl1,lat2,lon10 :value 115.000000
    pres_in:lvl1,lat2,lon11 :value 1007.000000
    temp_in:lvl1,lat2,lon11 :value 116.000000
    pres_in:lvl1,lat3,lon0 :value 1008.000000
    temp_in:lvl1,lat3,lon0 :value 117.000000
    pres_in:lvl1,lat3,lon1 :value 1009.000000
    temp_in:lvl1,lat3,lon1 :value 118.000000
    pres_in:lvl1,lat3,lon2 :value 1010.000000
    temp_in:lvl1,lat3,lon2 :value 119.000000
    pres_in:lvl1,lat3,lon3 :value 1011.000000
    temp_in:lvl1,lat3,lon3 :value 120.000000
    pres_in:lvl1,lat3,lon4 :value 1012.000000
    temp_in:lvl1,lat3,lon4 :value 121.000000
    pres_in:lvl1,lat3,lon5 :value 1013.000000
    temp_in:lvl1,lat3,lon5 :value 122.000000
    pres_in:lvl1,lat3,lon6 :value 1014.000000
    temp_in:lvl1,lat3,lon6 :value 123.000000
    pres_in:lvl1,lat3,lon7 :value 1015.000000
    temp_in:lvl1,lat3,lon7 :value 124.000000
    pres_in:lvl1,lat3,lon8 :value 1016.000000
    temp_in:lvl1,lat3,lon8 :value 125.000000
    pres_in:lvl1,lat3,lon9 :value 1017.000000
    temp_in:lvl1,lat3,lon9 :value 126.000000
    pres_in:lvl1,lat3,lon10 :value 1018.000000
    temp_in:lvl1,lat3,lon10 :value 127.000000
    pres_in:lvl1,lat3,lon11 :value 1019.000000
    temp_in:lvl1,lat3,lon11 :value 128.000000
    pres_in:lvl1,lat4,lon0 :value 1020.000000
    temp_in:lvl1,lat4,lon0 :value 129.000000
    pres_in:lvl1,lat4,lon1 :value 1021.000000
    temp_in:lvl1,lat4,lon1 :value 130.000000
    pres_in:lvl1,lat4,lon2 :value 1022.000000
    temp_in:lvl1,lat4,lon2 :value 131.000000
    pres_in:lvl1,lat4,lon3 :value 1023.000000
    temp_in:lvl1,lat4,lon3 :value 132.000000
    pres_in:lvl1,lat4,lon4 :value 1024.000000
    temp_in:lvl1,lat4,lon4 :value 133.000000
    pres_in:lvl1,lat4,lon5 :value 1025.000000
    temp_in:lvl1,lat4,lon5 :value 134.000000
    pres_in:lvl1,lat4,lon6 :value 1026.000000
    temp_in:lvl1,lat4,lon6 :value 135.000000
    pres_in:lvl1,lat4,lon7 :value 1027.000000
    temp_in:lvl1,lat4,lon7 :value 136.000000
    pres_in:lvl1,lat4,lon8 :value 1028.000000
    temp_in:lvl1,lat4,lon8 :value 137.000000
    pres_in:lvl1,lat4,lon9 :value 1029.000000
    temp_in:lvl1,lat4,lon9 :value 138.000000
    pres_in:lvl1,lat4,lon10 :value 1030.000000
    temp_in:lvl1,lat4,lon10 :value 139.000000
    pres_in:lvl1,lat4,lon11 :value 1031.000000
    temp_in:lvl1,lat4,lon11 :value 140.000000
    pres_in:lvl1,lat5,lon0 :value 1032.000000
    temp_in:lvl1,lat5,lon0 :value 141.000000
    pres_in:lvl1,lat5,lon1 :value 1033.000000
    temp_in:lvl1,lat5,lon1 :value 142.000000
    pres_in:lvl1,lat5,lon2 :value 1034.000000
    temp_in:lvl1,lat5,lon2 :value 143.000000
    pres_in:lvl1,lat5,lon3 :value 1035.000000
    temp_in:lvl1,lat5,lon3 :value 144.000000
    pres_in:lvl1,lat5,lon4 :value 1036.000000
    temp_in:lvl1,lat5,lon4 :value 145.000000
    pres_in:lvl1,lat5,lon5 :value 1037.000000
    temp_in:lvl1,lat5,lon5 :value 146.000000
    pres_in:lvl1,lat5,lon6 :value 1038.000000
    temp_in:lvl1,lat5,lon6 :value 147.000000
    pres_in:lvl1,lat5,lon7 :value 1039.000000
    temp_in:lvl1,lat5,lon7 :value 148.000000
    pres_in:lvl1,lat5,lon8 :value 1040.000000
    temp_in:lvl1,lat5,lon8 :value 149.000000
    pres_in:lvl1,lat5,lon9 :value 1041.000000
    temp_in:lvl1,lat5,lon9 :value 150.000000
    pres_in:lvl1,lat5,lon10 :value 1042.000000
    temp_in:lvl1,lat5,lon10 :value 151.000000
    pres_in:lvl1,lat5,lon11 :value 1043.000000
    temp_in:lvl1,lat5,lon11 :value 152.000000
    View Code
  • 相关阅读:
    ActionBarSherlock学习笔记——知识点
    ActionBarSherlock学习笔记——SubMenu
    Android解析xml——pull
    ActionBarSherlock学习笔记——ShareActionProvider
    Listview下拉刷新(顶部刷新)
    ActionBarSherlock学习笔记——SupportActionBar()属性设置
    ActionBarSherlock学习笔记——ActionBar.Tab
    ActionBarSherlock学习笔记——SearchView
    ActionBarSherlock学习笔记——requestWindowFeature
    ActionBarSherlock学习笔记——ActionBar添加View
  • 原文地址:https://www.cnblogs.com/lyggqm/p/12893441.html
Copyright © 2011-2022 走看看